Document Type

Article

Publication Date

October 2007

Abstract

We prove that if $F$ is a finitely generated abelian group of orientation preserving $C^1$ diffeomorphisms of $R^2$ which leaves invariant a compact set then there is a common fixed point for all elements of $F.$ We also show that if $F$ is any abelian subgroup of orientation preserving $C^1$ diffeomorphisms of $S^2$ then there is a common fixed point for all elements of a subgroup of $F$ with index at most two.

https://works.bepress.com/kamlesh_parwani/6/

Included in

Mathematics Commons

Share

COinS