Faculty Research & Creative Activity

Document Type

Article

Publication Date

January 2002

Abstract

The effect of contamination on eggshell mineralization has been studied for clapper rails (Rallus longirostris) inhabiting a contaminated salt marsh in coastal Georgia. To assess the impact of contaminants, the thickness, microstructure (crystal orientation), mineral composition, and chemistry of shell material were analyzed from a contaminated site and a nearby reference site using optical microscopy, X-ray diffraction, inductively coupled plasma mass spectrometry, and gas chromatography with electron capture detector. Eggshells from the contaminated site were generally thinner than those from the reference site. Also, eggshells from the contaminated site were abnormally brittle and contained anomalous microstructural attributes. The combination of reduced shell thickness and anomalous microstructure resulted in weaker eggshells, which in turn could pose a significant threat to the reproductive success of the affected population. PCB concentrations in eggshells were at background levels in both sites. Eggshells from the contaminated site had higher concentrations of heavy metals, specifically mercury, than the reference site. The structural changes observed in eggshells may be related to the concentration of specific metals (e.g., Mg, Cu, Zn, Pb, and Hg) in shell, however, statistical analyses indicated that metals only explained a small portion of the observed variation in properties (i.e., thickness, crystal orientation). Further analysis is required to better constrain the factors leading to unusually weak eggshells in the contaminated site.

Comments

This research was originally published in Archives of Environmental Contamination and Toxicology. 43:449-460

Included in

Biology Commons

Share

COinS