Faculty Research & Creative Activity
Document Type
Article
Publication Date
November 2012
Abstract
Expression of late embryogenesis abundant (LEA) proteins is highly correlated with desiccation tolerance in anhydrobiotic animals, selected land plants, and bacteria. Genes encoding two LEA proteins, one localized to the cytoplasm/nucleus (AfrLEA2) and one targeted to mitochondria (AfrLEA3m), were stably transfected into human HepG2 cells. A trehalose transporterwas used for intracellular loading of this disaccharide. Cellswere rapidly and uniformly desiccated to low water content (<0.12 g H2O/g dry weight) with a recently developed spin-drying technique. Immediately on rehydration, control cells without LEA proteins or trehalose exhibited 0% membrane integrity, comparedwith 98% in cells loaded with trehalose and expressing AfrLEA2 or AfrLEA3m; surprisingly, AfrLEA3m without trehalose conferred 94% protection. Cell proliferation across 7 d showed an 18-fold increase for cells dried with AfrLEA3m and trehalose, compared with 27-fold for nondried controls. LEA proteins dramatically enhance desiccation tolerance in mammalian cells and offer the opportunity for engineering biostability in the dried state.
Recommended Citation
Li, Shumin; Chakraborty, Nilay; Borcar, Apurva; Menze, Michael A.; Toner, Mehmet; and Hand, Steven C., "Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation" (2012). Faculty Research & Creative Activity. 108.
https://thekeep.eiu.edu/bio_fac/108
Included in
Biology Commons, Cellular and Molecular Physiology Commons, Systems and Integrative Physiology Commons
Comments
Published online before print November 26, 2012, doi: 10.1073/pnas.1214893109