From Olden to Golden: A Historical Analysis of Perceptions of Aging

Megan Elizabeth Sherrard
Eastern Illinois University

Recommended Citation
TO: Graduate Degree Candidates (who have written formal theses)

SUBJECT: Permission to Reproduce Theses

The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow these to be copied.

PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS:

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

___ ______________________
Author's Signature Date

I respectfully request Booth Library of Eastern Illinois University NOT allow my thesis to be reproduced because:

__
__
__
__

___ ______________________
Author's Signature Date
Abstract

As we enter the twenty-first century, issues of aging and the aged are becoming more prominent in scholarly literature due to advances in medical technology that enable more individuals to live to old age, increasing the proportion of elderly in society. This study examines the social construction of "old age" as it has been perceived historically. Using burial records from a large cemetery located in central Illinois, this thesis compares all cases said to have died of "old age" or "senility" to all cemetery cases in the same age range that died of causes other than "old age" or "senility." Although the variations in the patterns between and within the two populations are often small and not statistically significant, the findings are generally in the predicted directions, and illustrate "old age" as a social construction.
Acknowledgments

Thank you to the members of my thesis committee, Dr. Richard Hummel, Dr. Janet Cosbey, and Dr. Loretta Prater for their support and time spent reviewing my drafts. A very special thank you to my thesis advisor, Dr. Gary Foster, for serving as chair of my committee and for the long hours he spent guiding me in the right direction. I greatly appreciate the time and patience he spent helping me research and analyze my data, as well as his encouragement throughout this project.
Dedication

This thesis is dedicated to those friends and family members who have supported my efforts throughout the time spent on this project. Without your support and patience, graduate school would have never been possible. I am so very grateful to you all for sustaining the brunt of my mood swings and for the kind words to motivate me in times of frustration. Words cannot express how much I love you all.

A special dedication goes out to those friends and family members who cannot be with us today. Nicole and Erin, we miss you greatly and you are always in our hearts.
Table of Contents

Signature Page...i
Abstract...ii
Acknowledgments...iii
Dedication...iv
List of Tables...vi

Chapter 1: Introduction...1
 Statement of the Problem...4
 Purpose of the Study..4

Chapter 2: Literature Review...7
 Cemetery Research..7
 Age As a Label..9
 Causes of Death..11
 Labeling Theory..13

Chapter 3: Methodology..16
 Description of the Data Source..16
 Manner of Death versus Cause of Death............................17
 Limitations of Official Statistics....................................17
 Description of Data Coding and Analysis..........................20

Chapter 4: Hypotheses and Findings...24
 Elder Population Summary...38
 Population Comparisons...40

Chapter 5: Discussion..52

References...56

Appendix A: Elder Population Codebook.................................60
Appendix B: Elder Cemetery Population Codebook....................62
Appendix C: Summary of Findings..65
List of Tables

Table 1 ..26
 Cause by Era of Death

Table 2 ..28
 Age Year: the age of the deceased in years

Table 3 ..29
 Cause by Age in Years

Table 4 ..32
 Cause by Gender

Table 5 ..35
 Cause by Race/Ethnicity

Table 6 ..37
 Cause by Buried With Others

Table 7 ..39
 Cause by Season of Death

Table 8 ..42
 Average Length of Life in Years by Decade

Table 9 ..44
 Population Types by Gender Proportions

Table 10 ..46
 Populations by Race/Ethnicity

Table 11 ..49
 Populations by Degree of Kinship Support

Table 12 ..51
 Percentage of Deaths by Season
Chapter 1
Introduction

The United States is home to approximately 35 million people over the age of 65 (13% of the total population), those referred to as "senior citizens" (AARP, 1999). By the year 2030, the older population is expected to reach approximately 70 million adults (an estimated 17% of the population), with the fastest-growing group being the 85-and-older segment of this population (AARP, 1999). However, according to a survey sponsored by the American Association of Retired Persons (AARP) in 1999, only 28% of Americans are aware of this "graying of America" (AARP, 1999). Because the older segment of the population is growing so rapidly, the concern for aging issues and the need for professionals in the field of gerontology has increased greatly.

In the late 1800s, the issues of retirement policies and pensions were first addressed by the Baltimore and Ohio Railroad, which assured employees a retirement pension at the age of 65, as long as they had been with the company for at least 10 years (Atchley, 1997). Social Security was subsequently established to assist most older Americans after retirement. Established in 1935, the United States Social Security Act originally defined "old age" as 65 years and over, the age at which an employee was mandated to leave
the workforce. This political definition of "old age" was later revised to 70 years in 1978, in response to increasing awareness of age discrimination through mandatory retirement. In 1986, Congress abolished mandatory retirement for most employment altogether (Atchley, 1997). This exemplifies the ways in which the U.S. Government attempts to assist older workers in the workforce and advocates their rights as employees.

In contrast to governmental efforts to advocate in favor of older employees, corporations and businesses attempt to lure older employees into retiring at an earlier age. According to the United States Department of Labor, an "older worker" is an employee 40 years of age or older (Atchley, 1997). These people are often denied opportunities based on their chronological age or the appearance of age (Atchley, 1997). Although most employers cannot force their employees to retire, many companies offer incentives to induce early retirement, making the refusal of early retirement very difficult for older employees. Also, discriminatory hiring policies keep older workers from finding employment. Such discrimination includes not considering older workers for job openings, qualified older workers not being hired based on age, and the denial of promotions to older employees. It has been demonstrated that older workers have higher job satisfaction, are more loyal, do not miss work often, and are less likely to be
injured on the job (Doering, Rhodes, and Schuster, 1983; Atchley, 1997). However, many employers still believe that older workers are more costly in terms of money, time, and productivity. The motivation behind early retirement incentives is to remove older, "higher-cost" employees from the workplace.

Alternatively, elder advocacy organizations, such as AARP, have practical interest in redefining elder status at an earlier age, e.g., 50. This increases the pool from which the potential membership can be drawn and increases the potential political influence of such organizations.

These competing views of government, industry, and interest organizations underscore the social construction of old age. This becomes even more apparent in the aforementioned AARP survey. When asked to give a numerical definition of "old age," answers varied by gender and, more importantly, by the ages of those surveyed. Male and female respondents replied that 67 and 71, respectively, marked the start of "old age" (AARP, 1999). Finally, younger participants (aged 18-24) responded that 58 was "old," while older respondents (aged 65 and older) said that 75 was the beginning of "old age" (AARP, 1999).

The gender and age variations in these responses are manifestations of Mathilda White Riley’s age stratification theory, which contends that the "inequalities, differences, segregation, or conflict between age strata influence age
relations" (Atchley, 1997). This theory focuses on the ways in which the population is divided into age strata, such as youth, adulthood, and old age, and the interactions within and between age strata (Atchley, 1997). This type of age-grading functions to sort individuals into age strata and maneuvers them through age-graded roles and opportunity structures (Atchley, 1997).

Statement of the Problem and Purpose of the Study

In order to gain a greater understanding of the ways in which society, particularly in the Midwest, historically, constructed definitions of "old age" potentially based on stereotypes and perceptions, this research examines the historical trends and individual characteristics that have come to influence labels of certain individuals as "old" or "senile." Cemetery/burial records were examined for this thesis, and those cases identified as dying of "old age" or "senility," which implies elder status, were selected.

"Old age" and "senility," as causes of death, have been applied to those deceased cases because of certain characteristics or traits that these individuals possessed or were perceived to possess. Thus, for the purposes of this thesis, the label of "old age"/"senility" is the dependent variable being studied. Independent variables that could be gleaned from the burial records include attributes such as gender, ethnicity, age, month and year of death, and whether the case was buried with others of the
same surname. The intention of this analysis is to examine the patterns that emerge in those cases labeled as dying of "old age" or "senility." Such patterns would imply the existence of societal influences or forces that facilitate labels imposed upon certain individuals. The absence of these patterns implies personal reasons for labeling individuals as "old"/"senile." In any case, whether prompted by societal or individual motivations, the use of labels is accommodated by certain traits possessed by those labeled and the social perceptions of those labeling.

Preview of Following Chapters

The following chapters give attention to the topic of aging and the labels of "old age" and "senility" as social constructions. A review of literature (Chapter 2) provides insight into the subject of social gerontology and the ways in which society views the phenomenon and construction of aging. An examination of the methodology (Chapter 3) used in this analysis provides a greater delineation of the independent and dependent variables and why these variables were implemented. Chapter 4, devoted to research findings, sheds light on the trends of labeling certain individuals as "old" or "senile," based on characteristics that certain individuals possess or are perceived to possess (e.g., ethnic traits, familial ties, gender). Finally, a summary and discussion of these findings (Chapter 5) lends support
to the notion that "old age" and "senility" are social constructions, based on the perceptions of society.
Chapter 2
Literature Review

Given the multifaceted dimensions of this thesis (cemetery/burial records identifying cause of death, old age and senility as labels), literature was reviewed from many different areas of study. Literature pertaining to cemetery studies was reviewed to provide insight into the area of cemetery research and to also illustrate the potential for bringing cemetery data to gerontological study. Along with cemetery research, an interview with the local coroner, Michael C. Nichols, sheds light on the background of burial records and the history of the Coles County Coroner as the individual most likely to identify cause of death.

To illustrate the ways in which the labels of "old age" and "senility" are social constructions that carry negative stigma, literature was examined to identify the ways in which society views the phenomenon of aging. Specifically, a study conducted by AARP analyzes the attitudes that American adults hold toward aging. Finally, a review of the labeling theory investigates the social construction and perception of "old age" and "senility" from a sociological standpoint.

Cemetery Research

Cemetery data often yield information that is very useful to researchers. These data provide insight into the
ways in which particular societies regard life and death (Haveman, 1999) and their attitudes towards those interred. Many researchers agree that gravestones and cemeteries are quite valuable in yielding information about a society, along with the ideas, attitudes, and values held by its members (Haveman, 1999). Specifically, cemetery and gravestone research present views into society's attitudes toward the elderly and the value, or lack thereof, that is placed upon older adults by members of society.

Not only does cemetery research present a view into society's beliefs and values, it allows researchers to extract social data, such as gender, ethnicity, age, and seasonal fertility and mortality patterns (Foster, Hummel, and Adamchak, 1998). These data provide insight into the social and demographic patterns that occur over time (Foster, Hummel, and Adamchak, 1998). Cemeteries yield data that are relevant to many areas of study.

Many areas of research, such as anthropology, archaeology, genealogy, and history, have employed cemetery data. However, the fields of gerontology and sociology have had a minimal, almost nonexistent, role in cemetery research and analysis. Most sociological research has used cemeteries to analyze community expression and structure (Warner, 1959; Young, 1960; Foster, Hummel, and Adamchak, 1998). Sociological analysis of cemeteries often focuses on
social class (Warner and Lunt, 1941), familial associations, demographic patterns (Kephart, 1950), and stratification within a community (Young, 1960), ultimately analyzing the social make-up and structure over time. Other cemetery studies have focused on age-status and gender biases found in cemetery data (Foster and Hummel, 1995; Haveman, 1997; 1999).

Age As a Label

Aging has become a widely recognized issue in recent years. As baby boomers begin to join the 65-and-older age bracket, many adults are becoming quite interested in matters concerning senior citizens. With this large increase in the population of adults over the age of 65, research in the area of aging has flourished.

At a time when scientists may be close to discovering a breakthrough that will increase the lifespan of adults, the American Association of Retired Persons conducted a survey to assess the attitudes, beliefs, and views American adults hold toward aging and the aged. The poll found that, if given the chance, the majority of adults (63%) would prefer not to live to celebrate their 100th birthday (American Association of Retired Persons [AARP], 1999).

Why do most Americans not want to live to extreme old age? According to AARP Chief of Staff, Cheryl Cooper, "the reality of aging is changing faster than perceptions" (AARP, 1999). Most Americans continue to accept the stereotype
that frailty and poverty go hand-in-hand with growing old (AARP, 1999).

In order to obtain a comprehensive perspective on aging, respondents were asked to give a numerical definition of what they considered to be "old age" (AARP, 1999). Researchers found that the answer to this query depended on the current age of the respondent, with 18-24 year olds considering the age of 58 to be "old" (AARP, 1999). Respondents aged 65 and older claimed that being "old" begins at the age of 75 (AARP, 1999). There were also gender differences that became apparent in the study, with males considering 67 to be "old" and females answering that 71 was "old" (AARP, 1999). Overall, the study concluded that the average American adult would prefer to live to the age of 91, however, most respondents expect to only live to about 80 years of age (AARP, 1999).

The study conducted by AARP also made an interesting finding regarding the images of "young" and "old." When asked what comes to mind when thinking of someone as "old," respondents answered with descriptions such as physical limitations, appearance, and mental incapacities (e.g., senility). Being "young" was described in terms of attitudinal characteristics, including being energetic, having an active lifestyle, and a positive attitude (AARP, 1999). These descriptions reflect the notion that "old" and
"young" are social constructions, based on the stereotypes that individuals hold toward age.

Causes of Death

"Old age" and "senility," connoting old age, as labels, were occasionally identified as causes of death on burial records. Cause of death is now determined by personnel within the medicolegal system, such as coroners or medical examiners. The United States medicolegal system is organized into two types, with the term "medicolegal" referring to both the coroner system and the medical examiner system (Henson, 1978).

The organization of the United States medicolegal system, along with the qualifications for its personnel, varies within states and from state to state (Henson, 1978). At one end of the spectrum, centralized state medical systems require certified pathologists to run the system and physicians to serve as local medical examiners. The position of the medical examiner is appointed and is regarded as a professional career (Henson, 1978).

At the opposite end of the spectrum, states assign medicolegal duties to coroners who are elected in each county. The coroner position is considered a secondary career since it is an elected office (Henson, 1978). Depending on the region, coroners may be required to possess some medical training. Other areas may not impose any restrictions on candidates other than legal age and
citizenship (Henson, 1978). The coroner is usually responsible for a relatively small area and works in conjunction with the sheriff when a death warrants investigation (Henson, 1978; Nichols, 2000). The county coroner assists the sheriff in investigating all deaths of a violent nature, by excessive means, or where a crime may have been committed, such as accidental, homicidal, or suicidal deaths (Nichols, 2000). The coroner also has the authority to order autopsies and may hold inquests into the circumstances surrounding a death (Henson, 1978).

Coles County, as a political unit, employs the coroner system. The first record of a Coles County Coroner was 1916, though earlier records have been misplaced or destroyed. Currently, coroners, typically, are also peace officers who retain the same powers as sheriffs, serving in their place when their interest is compromised (Nichols, 2000).

Prior to the implementation of the coroner position in Coles County, Nichols suggests that cause of death was most likely determined by a local physician, or possibly even family members of the deceased (Nichols, 2000). Nichols also believes that the recording of "old age" or "senility" as a primary cause of death was largely due to the ignorance and lack of knowledge of physicians during the 19th and early 20th centuries (Nichols, 2000), and may also reflect the relatively low priority of elderly death cases (Henson,
1978). "Old age" and "senility" are medicolegally imprecise; since no one actually dies from old age or senility, it emphasizes the social construction of these death causes as labels.

Labeling Theory

Sociology's labeling theory emphasizes the social constructions of reality/the situation through the application of labels. In this manner, labels reflect more about the perceptions others have of those labeled than it may be about those labeled, in this case, "old" and "senile." A major application of labeling theory is the identification of those regarded as anormative or deviant. This is not to suggest that aging is deviant, per se, but aging in western society does convey stigma more than status. "Old age" or "senility," as causes of death, are perceptions being conferred, unlike diagnoses such as galoma blastoma multiform (brain cancer) or myocardiac infarction.

Labeling theory contends that "reality" is defined by societal reaction to certain groups, individuals, and behaviors and not by the behaviors themselves (Farley, 1990). The emphasis of labeling theory is on societal reactions to behaviors or appearances which, ultimately, define the acts or the actor. At the core of this theory is the ability of certain groups to "legitimize and enforce their interests" over others (Farley, 1990). In short, the
deviant label is a result of social processes and reaction rather than the personal behaviors of those labeled.

Within labeling theory, there are two types of deviance. Primary deviance is associated with "unique social, cultural, or psychological situations" and is not a consequence of labeling the person, but a consequence of labeling the behavior (Farley, 1990). This type of deviance is not concerned with the basic make-up of the one labeled; therefore, it has very little effect on one's self-concept (Farley, 1990). On the other hand, secondary deviance actually evolves out of a person's self-concept (Farley, 1990). Individuals engage in secondary deviance because they see themselves as being deviant, which is a direct result of labeling by others (Farley, 1990).

Initially, the emphasis of labeling theorists was on the consequences of different labels on individuals (Douglas, 1970). However, this was just one step away from analyzing the social determinants of the labeling process (Douglas, 1970). What became problematic was that labeling theorists never imagined the complications involved in the process of categorization (Douglas, 1970). Specifically, these theorists never came to understand the conditions under which one category would be applied rather than another (Douglas, 1970).

For the purposes of this thesis, the "deviant" act/behavior is aging or being "old," which has been
stigmatized in modern industrial society, at least in the West. The labeling theory argues that deviants are not intrinsically different from nondeviants, which is the case with aging (Farley, 1990). Elderly adults are in no way fundamentally different from their younger counterparts, except for the fact that they are chronologically older.

As "deviant" behavior, being "old" falls under the categories of both primary and secondary deviance. An individual aged 70 or older may be labeled as being "old" or "senile" because of his/her chronological age, not because of his/her actions or behavior, which is associated with secondary deviance. However, a person aged 65 or younger may be labeled as "old" due to actions or behavior, not because of the person him/herself, implying primary deviance. Because it incorporates both types of deviance, aging or being "old" experiences a compounded stigma from surrounding society.
Chapter 3
Methodology

Description of Data Source

Located in east central Illinois, Coles County has 109 cemeteries (Foster, Hummel, and Adamchak, 1998). In the 1930s, the Sally Lincoln Chapter of the Daughters of the American Revolution surveyed Coles County cemeteries and recorded gravestone inscriptions. The Coles County Genealogical Society later updated this survey, beginning in 1979, and has currently published three of an expected four volumes (Foster, Hummel, and Adamchak, 1998).

Included in this survey was Dodge Grove Cemetery, located in the northwestern part of the Mattoon township. Established in the spring of 1862 from a previously existing cemetery, Dodge Grove Cemetery was declared the city's official burial site (Coles County Illinois Genealogical Society, 1985). Burial records from this cemetery provide vital information, such as name, gender, age, race, date of death, and cause of death (including "old age" and "senility"). Because these data have the potential of allowing a greater understanding as to why certain individuals are labeled as dying of "old age" or "senility," Dodge Grove burial records were used as the primary source of data for this thesis.
Manner of Death versus Cause of Death

In any consideration of death, it is necessary to distinguish between the ways in which death is determined. Most people are concerned with an individual’s cause of death. This refers to the medical cause of death, e.g., heart attack, loss of blood, and so on.

However, manner of death is also considered in social statistics and is used even more frequently by researchers than cause of death statistics (Henson, 1978). Referring to the way in which an individual met his or her demise, manner of death is usually placed into one of the following five categories: accidental, homicide, natural, suicide, or undetermined (Henson, 1978).

For the purposes of this thesis, the data being used are cause of death statistics, which provide medical reasons for an individual’s death, though “old age”/“senility” might also be cast as a subset of natural death, itself a subset of manner of death. Since no one actually dies from “old age” or “senility,” these causes of death are based upon what is perceived by others about the individual.

Limitations of Official Statistics

The use of official statistics as a primary source of data puts many restraints on the information that is available to the researcher. Because the data that can be extracted from official statistics are limited, as in
manner/cause of death statistics, research questions must be formulated to fit the data.

Along with the limited availability of information that can be extracted from official statistics, other constraints apply when analyzing these statistics.

Regardless of the subject matter involved, official statistics are compiled for purposes other than social science research. Added to this, the reality represented by these statistics must be filtered through a bureaucratic organizational structure, complete with constraints imposed by unique personalities, circumstances, and organizational requirements, all of which introduce additional sources of bias (Henson, 1978).

Due to bureaucratic goals and constraints and varying definitions used in classification, the reliability and accuracy of official statistics are questionable (Henson, 1978). Within the medicolegal system, there is a lack of uniformity in training officers, causing medicolegal criteria and definitions to not always be consistent from one medicolegal officer to the next (Henson, 1978). Also, often times, the lack of knowledge of the circumstances leading up to death makes it difficult for medicolegal officers to determine an accurate death verdict (Henson, 1978). Finally, structural constraints and varying role expectations cause role strain and conflict for medicolegal officials, which ultimately affect death verdicts (Henson,
This is especially true for the coroner, who often holds other employment, in addition to the medicolegal role.

Considering all of the criticisms/weaknesses of official statistics, it is obvious that dysfunctions within the medicolegal system affect the accuracy of death statistics. Because official statistics are subject to random and biased error in the determination process, it is unlikely that any medicolegal system would produce completely accurate statistics (Henson, 1978). These errors may be due to the aforementioned role strain experienced by medicolegal officers, such as lack of training or bureaucratic pressures to provide death verdicts too quickly (Henson, 1978). Also, local verdicts may be changed or pooled together in the bureaucratic process (Henson, 1978). Finally, the broad variations in legal requirements, organizations, and the availability of facilities all cause difficulties in providing accurate death statistics.

In order to minimize error, some precautions should be taken when using official death statistics. First, at the bureaucratic level, one should recognize structural variables, such as the size of the medicolegal system, the availability of trained officials, and the type of system (medical examiner or coroner) in operation (Henson, 1978). Comparisons should also be limited to similar types of medicolegal systems and background research in target
offices should be performed to analyze reporting biases (Henson, 1978). Finally, statistics should come from the same source level to ensure greater accuracy of death verdicts and official statistics (Henson, 1978).

However, none of the aforementioned shortcomings apply to this study. The cause of death data used in this research are not aggregated, but are taken from the level of origin. Moreover, causes of death, to a greater or lesser degree, are the perceptions about the deceased ("old," "senile") that have emerged as social constructions.

Description of Data Coding and Analysis

For the purposes of this thesis, all data were taken from Dodge Grove Cemetery burial records. These data were then entered into the MicroCase 4.5 program, which allows researchers to code data and perform statistical analyses of variables.

In analyzing Dodge Grove burial records, all cases that were labeled as dying of old age or senility were selected. Old age and senility cases were then coded into the MicroCase program and treated as dependent variables. Initially, debility (as a cause of death) was also selected as part of the old age/senility causes; however, further examination revealed that approximately half of the debility cases were young people. Therefore, the dependent variable category of "Cause" (variable #9) ultimately consisted of
the 215 burial record cases that were labeled as dying of old age or senility.

The first independent variable, "Surname," was coded as a three-digit number, ranging from 001 to 190. Each number was dedicated to those with the same surname (last name); thus, there were 190 different surnames within the population.

The second independent variable, coded as "BWOthers," shows whether each case was buried with others of the same surname. This variable was used because it has the potential of connoting familial relationships.

"Ethnicity" and "Ethnicity 2," the third and tenth (independent) variables, refer to the ethnic background of each case (as surmised by surname or the explicit label of "black"). The sample population consists of 16 different ethnicities, which were coded into the "Ethnicity" variable category. These 16 ethnicities were further collapsed into four ethnic groups, which became the "Ethnicity 2" variable category. These four ethnic groups include: English (English, Scottish, Irish, and Welch), Germanic (German, Eastern European, Scandinavian, Dutch, Swedish, and Swiss), African American, and Other (French, Spanish, Italian, Middle Eastern, and Asiatic backgrounds).

"Sex" is the fourth (independent) variable, which refers to the gender of each case. The population consists
of 98 males (45.6% of the population) and 117 females (54.4% of the population).

The fifth (independent) variable, "Age Year," is the chronological age of each case. The population ranged in age from 55 to 116 years.

"Death Year," the sixth (independent) variable, refers to the year in which each case died. This variable category ranges from 1873 to 1953; i.e., the first old age/senility cases died in 1873 and the last cases died in 1953.

The seventh and eleventh (independent) variables, "Death Era" and "Death Era 2," refer to the era in which each case died. In the "Death Era" variable category, 17 different eras were identified, defined as 5-year time periods. These were then collapsed into the "Death Era 2" category, which consists of nine, 10-year time spans (decades), beginning in 1870 and ending in 1959.

Variables eight and twelve, "Death Month" and "Death Month 2," refer to the month or season in which each case died. The "Death Month" variable category identifies each of the twelve months. These months were later collapsed into January/February, March/April, May/June, July/August, September/October, and November/December and coded as the "Death Month 2" variable in order to analyze seasonal trends (see code book, Appendix A).
All of the aforementioned independent variables were selected to search for trends involving individuals labeled as dying of old age or senility and to distinguish the characteristics that cause certain individuals to be so labeled by society, while others are not. All of these variables are yielded by the burial records and gravestone data. However, a limitation of such data sources is that these variables are exhaustive. Additional variables are not readily available for each case.
Chapter 4
Hypotheses and Findings

The hypotheses developed in this thesis apply to the population of 215 deceased individuals who were labeled as dying of "old age" or "senility." Of these cases, 152 (70.7%) were labeled as dying of "old age," while 63 (29.3%) were assigned the label of "senility" as a death cause. This population is designated as the elder population. This population was analyzed by examining the relationships between independent and dependent variables, then compared to the entire elder cemetery population (8,531 cases), defined as 55 years of age and over, the youngest age in the elder population.

Death Era

According to Dodge Grove cemetery records, the first case labeled as dying of "old age"/"senility" occurred in 1873, while the last of these deaths occurred in 1953. The highest frequency of "old age"/"senility" deaths occurred between 1900 and 1914, during a time when scientific knowledge was embryonic and medical technology was in its most rudimentary stages. These cause-of-death labels are not assigned in a random manner; "old age" labels surpass "senility" labels 2.5 to 1. The more frequently used label is more subjective and dismissive than "senility," which has some medical and scientific support.
Hypothesis One: As a cause of death, "old age" will be assigned more frequently in earlier decades, while "senility" will be assigned more frequently in later decades.

Investigation by decade shows that "old age" was employed as a cause of death every decade until the 1940s, with a sharp decline beginning in the 1920s. As a cause of death, "senility" was not employed until the first decade of the 1900s, and did not exceed "old age" as a cause of death until the 1920s. By the next decade, "old age" became nonexistent as a death cause, while "senility" continued to be employed until the 1950s (see Table 1). The sequential use of the labels is statistically significant.

As a death cause, "old age" was most likely assigned in the absence of any distinct cause and, therefore, was more satisfactory than allowing the request for a cause of death to remain vacant. The increasing scientific awareness and medical knowledge during the early 20th century is one factor that led to the label of "old age" being superseded by "senility" as a cause of death. Thus, "old age" is considered to be more pejorative and more marginalized than the label of "senility."

Age

With respect to age, the population labeled as "old" or "senile" ranged from 55 to 116 years of age. The mean age of those labeled "old" was 79.8 years (md, 80.0 years),
Table 1

Cause by Era of Death

<table>
<thead>
<tr>
<th>Cause</th>
<th>1870s</th>
<th>1880s</th>
<th>1890s</th>
<th>1900s</th>
<th>1910s</th>
<th>1920s</th>
<th>1930s</th>
<th>1940s</th>
<th>1950s</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>Old</td>
<td>9</td>
<td>26</td>
<td>36</td>
<td>47</td>
<td>23</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>90.4%</td>
<td>54.8%</td>
<td>42.9%</td>
<td>7.7%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>70.7%</td>
</tr>
<tr>
<td>Senility</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>19</td>
<td>12</td>
<td>24</td>
<td>2</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>9.6%</td>
<td>45.2%</td>
<td>57.1%</td>
<td>92.3%</td>
<td>100%</td>
<td>100%</td>
<td>29.3%</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>42</td>
<td>21</td>
<td>26</td>
<td>2</td>
<td>1</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Chi Square: 109.222 (DF= 8; P= .000)

Correlation (0.664) is significant at the .01 level, one-tailed

Difference of means, P= .000
while the mean age of those labeled "senile" was 80.9 years (md, 82.5 years). Overall, the mean age of the total sample of those labeled "old"/"senile" was 79.8 years (md, 80.6 years). As displayed in Table 2, only 1.0% of the elder population was aged less than 60 years; 6.3% were aged 60-69; 31.3% were aged 70-79; 49.5% were aged 80-89; 10.1% were aged 90-99; and 1.9% were 100 years of age or older (see Table 2). The two youngest (55 and 58) and the two oldest (105 and 116) members of the population were female and were all assigned the death cause label of "old age."

Since older members of a population are more likely to exhibit signs of senility, such as memory impairment and periods of delirium, it is more likely that these people will be labeled as dying from "senility." Younger members, who do not generally display these symptoms of senility, are more likely to be assigned the death cause of "old age" due to the lack of any explicable cause of death.

Hypothesis Two: As a cause of death, "old age" will decrease as the age of the population increases, while "senility" as a cause of death will increase with age.

Analysis of causes of death by age (see Table 3) shows that the hypothesized relationship between variables is statistically significant (test of means, p <.05), suggesting that assigned cause of death is a function of age. However, this relationship may also be a function of time. Over time, people live longer and "senility" labels
Table 2

Age Year: the age of the deceased in years

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-59</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>60-69</td>
<td>13</td>
<td>6.3</td>
</tr>
<tr>
<td>70-79</td>
<td>65</td>
<td>31.3</td>
</tr>
<tr>
<td>80-89</td>
<td>103</td>
<td>49.5</td>
</tr>
<tr>
<td>90-99</td>
<td>21</td>
<td>10.1</td>
</tr>
<tr>
<td>100 & over</td>
<td>4</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Table 3

Cause by Age in Years

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>AGE IN YEARS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Age</td>
<td>50-59</td>
<td>60-69</td>
<td>70-79</td>
<td>80-89</td>
<td>90-99</td>
<td>100 & over</td>
<td>Missing</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>2</td>
<td>10</td>
<td>49</td>
<td>72</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Senility</td>
<td>0</td>
<td>3</td>
<td>16</td>
<td>31</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>0.0%</td>
<td>23.1%</td>
<td>24.6%</td>
<td>30.1%</td>
<td>52.4%</td>
<td>25.0%</td>
<td>100%</td>
<td>100%</td>
<td>29.8%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>13</td>
<td>65</td>
<td>103</td>
<td>21</td>
<td>4</td>
<td>7</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Chi Square: 7.131 (DF = 5; P = 0.211)

Correlation (0.143) is significant at the .05 level, one-tailed

Difference of means, P = .040
were not assigned until later years. Therefore, age may not be an independent variable that determines the application of "old age"/"senility"; instead, increasing longevity (age) over time and the emergence of "senility" as the preferred death cause (see hypothesis one) may be converging to yield this relationship.

Gender

The 215 cases consisted of 117 (54.4%) females and 98 (45.6%) males, yielding a sex ratio (x number of males per 100 females) of 83.8. Female-favored proportions are to be expected when examining an elderly population, considering females have a greater life expectancy than males. Prior research of cemeteries (e.g., Foster, Hummel and Adamchak, 1998) reveals the disproportionate number of females in older populations.

When examining a population of elders, evidence of the unequal treatment of females interred in cemeteries has also been found (Foster, Hummel and Adamchak, 1998). While the death cause of "old age" is the more dismissive assignment, "senility" is assessed through a more evaluative process. For example, a person who died of "old age" was evaluated as being old at the end of life, while a person who died of "senility" displayed conduct in later years that was looked upon negatively. Due to the marginalization of females throughout life, and in death, and the greater life expectancy of women, coupled with the assignment of
"senility" to the older members of the population (see hypothesis two), it is more likely that women will be assigned the death cause of "senility" more often than males.

Hypothesis Three: Females will be assigned the label of "senility" as a death cause more frequently than male members of the elder population.

In accordance with the hypothesized pattern, 31.6% of females and 26.5% of males were labeled as dying of "senility," although this finding was not statistically significant (see Table 4). Of those that died of "old age," 68.4% were females and 73.5% were males. The proportions of females and males in both "senility" and "old age" cases (68.4%/73.5% and 31.6%/26.5%, respectively), are almost equal. This suggests that gender, in itself, does not influence "old age" or "senility" as social constructions. The mean and median ages of females were 81.5 and 82.0, respectively, and 79.6 and 80.0 for males. Although females, on average, have greater life expectancies than males, it is expected that both genders would have similar age patterns when examining a population labeled as dying of "old age"/"senility."

Ethnicity/Race

Of the 215 cases, 167 (77.7%) descended from English/British heritage, 33 (15.3%) were of Germanic descent, 9 (4.2%) were identified as "Other," and 6 (2.8%)
Table 4

Cause by Gender

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Age</td>
<td>72</td>
<td>80</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>73.5%</td>
<td>68.4%</td>
<td>70.0%</td>
</tr>
<tr>
<td>Senility</td>
<td>26</td>
<td>37</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>26.5%</td>
<td>31.6%</td>
<td>29.3%</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>117</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
were African American. Such ethnic identity was determined by the surname of the deceased, using ethnic name dictionaries (e.g., Rule and Hammond, 1973). Certainly, this invites imprecision and is confounded by exogamous marriages of women. However, no other insight into ethnicity was available. Data were examined for patterns in the application of “old age”/“senility” labels based on ethnicity; however, no patterns emerged. Longevity (which is distinct from perceptions of longevity) is most likely the result of a combination of genetics (nature) and lifestyle (nurture). It is possible that individuals of European descent, who make up the majority of our population, have essentially minimized any ethnically-driven trends via intermarriage. Although birthplace could not be determined from the available data, it is likely that the majority of cases were born and raised in the United States (thus socialized as “Americans”), causing ethnic characteristics and traits to become commingled and nondistinct. Also, as already noted, determining one’s ethnicity by surname may be inaccurate due to the fact that women may have married men outside their own ethnic backgrounds. Therefore, the ethnic groups were collapsed into Caucasian and African American. Since “old age” is the more dismissive diagnosis, it will most likely be assigned to marginalized groups.
Hypothesis Four: A greater proportion of African Americans will be assigned the death-cause label of "old age."

Although findings reveal no statistically significant differences, African Americans were more likely to be assigned the label of "old age" (83.3% versus 70.5%; see Table 5). Even when controlling for decade of death, this pattern held. As some further support of the marginalization thesis, findings revealed that while only 11.0% of Caucasians were buried as isolates, 33.3% of African Americans were not buried with any others of the same surname, and prompts some consideration of familial relationships.

Familial Relationships

Some degree of kinship significance may be revealed by examining those cases that were buried as isolates versus those that were buried with others of the same surname. The elder population of 215 cases consisted of 25 (11.6%) cases that were buried alone and 190 (88.4%) that were buried with others of the same surname. In this case, the marginalized group is interred as isolates, which suggests that perhaps these individuals lived their later lives alone and, therefore, were not buried with loved ones. The death-cause label of "old age" is more dismissive than "senility," which takes more time, effort, and knowledge to assess.
Table 5

Cause by Race/Ethnicity

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>RACE/ETHNICITY</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Age</td>
<td>White</td>
<td>141</td>
<td>5</td>
<td>6</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>70.5%</td>
<td>83.3%</td>
<td>66.7%</td>
<td>70.7%</td>
<td></td>
</tr>
<tr>
<td>Senility</td>
<td>White</td>
<td>59</td>
<td>1</td>
<td>3</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>29.5%</td>
<td>16.7%</td>
<td>33.3%</td>
<td>29.3%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>White</td>
<td>200</td>
<td>6</td>
<td>9</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>
While "senility" was probably not diagnosed by a physician or some other qualified individual, the death-cause label of "old age" was most likely given by distant kin or someone outside the family, i.e., not in daily contact with those labeled "old age."

Hypothesis Five: A greater proportion of those interred as isolates will be assigned the death-cause label of "old age."

Of the 25 elders buried alone, 16 (64.0%) were assigned the death cause of "old age" while 9 (36.0%) were labeled "senile" (see Table 6). Therefore, the hypothesis is supported, although it is not statistically significant. What is important are the social implications of this finding: more of those cases interred alone were considered to be "old" rather than "senile." While "old" is a description based mainly on physical appearance, "senility" is a delineation based on the observation of behavior over time. Since individuals who were buried alone perhaps lived their later lives alone, with no one present to observe their behavior, it is no surprise that these people were labeled "old" rather than "senile."

Season of Death

When looking at season of death, previous cemetery research (Dethlefsen, 1969; Foster, Hummel and Adamchak, 1998) has found that older adults tend to expire in late
Table 6

Cause by Buried With Others

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>BURIED WITH OTHERS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Old Age</td>
<td>16</td>
<td>136</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64.0%</td>
<td>71.6%</td>
<td>70.7%</td>
<td></td>
</tr>
<tr>
<td>Senility</td>
<td>9</td>
<td>54</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.0%</td>
<td>28.4%</td>
<td>29.3%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>190</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>
winter, most likely the result of respiratory complications such as influenza and pneumonia.

Hypothesis Six: The proportion of "old age" and "senility" deaths will increase in winter months.

The twelve calendar months were collapsed into six, two-month periods (January/February, March/April, May/June, July/August, September/October, November/December) in order to categorize these months into seasons. Table 7 reveals a pattern that supports the hypothesis, with the most (50 or 23.3%) "old age"/"senility" deaths occurring in late winter (January/February) and the fewest (30 or 14.0%) in the fall (September/October).

Elder Population Summary

Analysis of the population shows a patterned application of "old age" and "senility" in regards to age and era of death. Although not statistically significant, expected differences were also found in the assignment of "old age"/"senility" labels concerning race, familial relationships, and season of death. Gender was the only variable that revealed a pattern contradictory to what was anticipated. The use of "old age" and "senility" as two separate causes of death revealed few statistically significant differences. Therefore, the two were collapsed into one category and the elder population is compared to the entire elder cemetery population of 8,531 deceased individuals aged 55 and over.
Table 7

Cause by Season of Death

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>Jan/Feb</th>
<th>Mar/Apr</th>
<th>May/June</th>
<th>July/Aug</th>
<th>Sep/Oct</th>
<th>Nov/Dec</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Age</td>
<td>37</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>22</td>
<td>25</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>24.3%</td>
<td>14.5%</td>
<td>15.1%</td>
<td>15.1%</td>
<td>14.5%</td>
<td>16.5%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Senility</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>8</td>
<td>8</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>20.6%</td>
<td>15.9%</td>
<td>17.5%</td>
<td>20.6%</td>
<td>12.7%</td>
<td>12.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>30</td>
<td>33</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>23.3%</td>
<td>14.9%</td>
<td>15.8%</td>
<td>16.7%</td>
<td>14.0%</td>
<td>15.3%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Population Comparisons

Collapsing "old age" and "senility" into a single, stereotyped population allows a comparison to the entire elder cemetery population to determine how the stereotyped population is markedly different. With respect to the total cemetery population, 8,531 (51.3% of the entire cemetery population) deceased individuals were 55 and over, which was the youngest case that was labeled as dying of "old age"/"senility," while 6,507 (42.9% of the entire cemetery population) individuals were 65 and over, all of whom were identified as dying from causes other than "old age" or "senility." Some of the variables, all gathered from the a priori data, (e.g., gender, ethnicity) are ascribed and endure throughout one's life, while some variables (e.g., familial ties, age) change with time. If substantial differences emerge, the stereotyped labels may be a product of those differences, but if differences are minimal, the labels are a product of socially constructed perceptions, apart from any causal differences. Therefore, it is useful to compare the entire elder cemetery population and the smaller population of elders.

Age Comparison

Age, as a variable, discloses a great deal of information about the deceased. Ages were identified in 208 (96.7%) of the 215 "old age"/"senility" cases (ranging from 55 to 116 years of age), while 8,322 (97.6%) of the 8,531
remaining elder cemetery cases had ages identified. The 209 cases without explicit age attributed were identified as being in their sixties or nineties (or other decade of life), allowing the classification as elder.

Mean and median ages of death were compared in the elder population and the elder cemetery population (see Table 8). The mean and median ages at death for the elder and the elder cemetery populations showed only slight increases over time. Table 8 reveals that the mean and median ages for the elder population surpassed those of the elder cemetery population in most decades. Hence, those labeled as having died of "old age" or "senility," as a group, were older than the entire elder cemetery population, but age alone does not compel application of the labels since many in the elder cemetery population are as old as those in the elder population and are not pejoratively labeled, suggesting that there are other factors determining the application of "old age" and "senility" labels.

Gender Comparison

In younger populations, sex ratios reflect the prevalence of males. However, due to the longer life expectancy of females, sex ratios of older populations reflect the predominance of females (Atchley, 1997). Because more males are conceived and delivered, the overall gender ratio for an entire cemetery population will reveal a preponderance of males. For example, regarding the entire
Table 8

Average Length of Life in Years by Decade

<table>
<thead>
<tr>
<th></th>
<th>1870s</th>
<th>1880s</th>
<th>1890s</th>
<th>1900s</th>
<th>1910s</th>
<th>1920s</th>
<th>1930s</th>
<th>1940s</th>
<th>1950s</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELDER POPULATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>78.4</td>
<td>65.8</td>
<td>80.5</td>
<td>80.3</td>
<td>81.1</td>
<td>80.0</td>
<td>84.5</td>
<td>98.5</td>
<td>92.0</td>
</tr>
<tr>
<td>Median</td>
<td>76.0</td>
<td>76.0</td>
<td>80.0</td>
<td>81.0</td>
<td>82.0</td>
<td>83.0</td>
<td>83.0</td>
<td>98.5</td>
<td>92.0</td>
</tr>
<tr>
<td>ELDER CEMETERY POPULATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>72.3</td>
<td>69.6</td>
<td>70.1</td>
<td>70.3</td>
<td>71.5</td>
<td>72.7</td>
<td>72.5</td>
<td>73.1</td>
<td>73.8</td>
</tr>
<tr>
<td>Median</td>
<td>71.0</td>
<td>85.5</td>
<td>70.0</td>
<td>69.5</td>
<td>70.5</td>
<td>72.0</td>
<td>72.5</td>
<td>73.5</td>
<td>73.5</td>
</tr>
</tbody>
</table>
cemetery population of the 15,643 cases with gender identified, 8,296 (53.0%) were males and 7,347 (47.0%) were females, yielding a sex ratio of 112.9.

Hypothesis Seven: Sex ratios in the two elder populations will favor females, with the proportion of females being greater in the elder population.

The 215 elder cases consisted of 98 (45.6%) males and 117 (54.4%) females, yielding a sex ratio of 83.8. The elder cemetery population consisted of 4,436 (52.0%) males and 4,095 (48.0%) females, yielding a sex ratio of 108.3 (see Table 9). The latter ratio is one that is anticipated from a more complete age-range population, while the former ratio is expected of elder populations. Hence, the sex ratios were reversed in the elder and the elder cemetery populations. In terms of gender composition, the elder cemetery population is more typical of an entire population and not an elder population, probably because age 55, the beginning age for the elder cemetery population is arbitrarily low, consequently including more males. Thus, the hypothesis is rejected.

Ethnic/Racial Comparison

With respect to ethnicity, this research examined the elder population and found no patterned differences in the application of "old age" and "senility," diminishing any ethnic influence in such assessments. Therefore, no
Table 9

Population Types by Gender Proportions

<table>
<thead>
<tr>
<th>Population</th>
<th>Males</th>
<th>Females</th>
<th>Sex Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elder Population</td>
<td>45.6 (98)</td>
<td>54.4 (117)</td>
<td>83.8</td>
</tr>
<tr>
<td>Elder Cemetery Pop.</td>
<td>52.0 (4436)</td>
<td>48.0 (4095)</td>
<td>108.3</td>
</tr>
</tbody>
</table>
racial/ethnic differences are expected when comparing the elder cemetery and elder populations.

Hypothesis Eight: The racial/ethnic composition of the elder population will be similar to the racial/ethnic composition of the elder cemetery population.

Examination of race/ethnicity revealed no differences in the composition of the elder and the elder cemetery populations (see Table 10). Since the racial/ethnic composition of the elder population so closely reflects that of the elder cemetery population, this suggests that racial/ethnic characteristics have no patterned effect on the social construction of “old age”/“senility.”

Comparison of Familial Relationships

As was employed by Young (1960), person/name ratios (number of persons/number of surnames) were extracted from the cemetery data and used for this research. He proposed that familial significance (along with family size) increases as the ratio increases, increasing the homogeneity of the surrounding community. “If small, it reflects declining...kinship importance, a trend...associated with certain changes in the economy and mobility of the population” (Young, 1960), along with smaller family size. The person/name ratio for the entire cemetery population was 4.29, comparable to other similarly derived ratios (see Foster, Hummel and Adamchak, 1998). Due to the fact that
Table 10

Populations by Race/Ethnicity

<table>
<thead>
<tr>
<th>POPULATIONS</th>
<th>German</th>
<th>English</th>
<th>Black</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elder Population</td>
<td>15.3</td>
<td>77.7</td>
<td>2.8</td>
<td>4.2</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>(33)</td>
<td>(167)</td>
<td>(6)</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>Elder Cemetery</td>
<td>18.5</td>
<td>77.2</td>
<td>1.5</td>
<td>2.8</td>
<td>8531</td>
</tr>
<tr>
<td>Population</td>
<td>(1579)</td>
<td>(6585)</td>
<td>(128)</td>
<td>(239)</td>
<td></td>
</tr>
</tbody>
</table>
the labels of "old age" and "senility" are negative perceptions chosen from a variety of less dismissive causes of death that are just as available for application, it is likely that such labels will be applied to marginalized groups, e.g., those with weak familial ties. However, using this method for older segments of populations results in smaller ratios naturally because the numerator (number of people) is reduced while the denominator (number of surnames) decreases only marginally. Such ratios do, however, yield measures of the relative presence of elderly in families. To the extent that "old age" and "senility" are pejorative perceptions, they are more likely to be offered in contexts of low family support, more distant kin, and in families with fewer elderly, and hence, less empathetic understanding.

Hypothesis Nine: The elder population will have a smaller person/name ratio than the elder cemetery population.

The "old age"/"senility" population had a person/name ratio of 2.91, while the elder cemetery population had a person/name ratio of 3.04. This implies a possible decline in the importance of kinship, decrease in the number of elderly per family, and perhaps diminished support for elders. Because of this, "old age" and "senility" may only be convenient labels that fit social perceptions. The
ratios came from separate data sets and contingency tables and cannot be tested for significance, but the pattern suggests that kinship may have some influence in using "old age" and "senility" labels.

A comparison of the cases buried as isolates (i.e., a surname only appearing once in the cemetery) provides further understanding of the importance of familial ties. As shown in Table 11, the elder population consisted of 25 (11.6%) cases that were buried as isolates, while the elder cemetery population consisted of 896 (10.5%) cases that were buried alone, both similar to the proportion of isolates of the total cemetery population (1,918/11.7%). The two populations are virtually identical, which also emphasizes the normalcy of our elder demographics. Therefore, those members of the elder population are no more likely to be buried alone than members of the elder cemetery population. However, elders are more apt to belong to families with fewer elderly (as suggested by the person/name ratio) which implies the marginalization of those cases labeled as dying of "old age" and "senility."

Season of Death Comparisons

With respect to season of death, historical data reveal that elders tend to die more frequently in late winter while younger individuals tend to die in late summer months (Dethlefsen, 1969; Wrigley and Schofield, 1981; Foster, Hummel and Adamchak, 1998). Insect- and water-borne
Table 11

Populations by Degree of Kinship Support

<table>
<thead>
<tr>
<th>POPULATIONS</th>
<th>DEGREE OF KINSHIP SUPPORT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buried As Isolates</td>
<td>Buried With Others</td>
<td></td>
</tr>
<tr>
<td>Elder Population</td>
<td>11.6%</td>
<td>88.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25)</td>
<td>(190)</td>
<td></td>
</tr>
<tr>
<td>Elder Cemetery</td>
<td>10.5%</td>
<td>89.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(896)</td>
<td>(7635)</td>
<td></td>
</tr>
<tr>
<td>Total Population</td>
<td>11.7%</td>
<td>88.3%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1918)</td>
<td>(14522)</td>
<td></td>
</tr>
</tbody>
</table>
diseases (e.g., dysentery and malaria) occur more frequently in summer months, diseases that older adults survived and most likely built up resistance to. The prevalence of late winter deaths in the elder population was most likely the result of influenza and respiratory diseases (Wrigley and Schofield, 1981). Given the difference in (mean and median) ages between the two populations (see Table 8), the following is hypothesized:

Hypothesis Ten: Deaths in the elder population will be more frequent in late winter months than deaths in the elder cemetery population.

For the purposes of analysis, the twelve calendar months were collapsed in six, two-month, seasonal periods. As expected, elder deaths peaked in the late winter months while the deaths of the elder cemetery population were more frequent, but not as prominent in the winter (see Table 12). This is a trend that is singular to elder deaths, generally. Therefore, season of death is dependent upon age. As in gender and familial associations, the persistence of this "demographic fact" further confirms the normalcy of the population’s demographics.
Table 12

Percentage of Deaths by Season

<table>
<thead>
<tr>
<th></th>
<th>Jan/Feb</th>
<th>Mar/Apr</th>
<th>May/June</th>
<th>July/Aug</th>
<th>Sep/Oct</th>
<th>Nov/Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elder</td>
<td>23.3%</td>
<td>14.8%</td>
<td>15.8%</td>
<td>16.7%</td>
<td>13.9%</td>
<td>15.4%</td>
</tr>
<tr>
<td>Population</td>
<td>(50)</td>
<td>(32)</td>
<td>(34)</td>
<td>(36)</td>
<td>(30)</td>
<td>(33)</td>
</tr>
<tr>
<td>Elder</td>
<td>18.6%</td>
<td>18.0%</td>
<td>15.5%</td>
<td>16.0%</td>
<td>14.9%</td>
<td>17.1%</td>
</tr>
<tr>
<td>Cemetery</td>
<td>(1588)</td>
<td>(1535)</td>
<td>(1319)</td>
<td>(1360)</td>
<td>(1266)</td>
<td>(1454)</td>
</tr>
<tr>
<td>Total</td>
<td>17.5%</td>
<td>17.7%</td>
<td>15.3%</td>
<td>17.0%</td>
<td>16.1%</td>
<td>16.4%</td>
</tr>
<tr>
<td>Cemetery</td>
<td>(2854)</td>
<td>(2903)</td>
<td>(2504)</td>
<td>(2783)</td>
<td>(2631)</td>
<td>(2677)</td>
</tr>
<tr>
<td>Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5
Discussion

The purpose of this thesis is to provide insight into the application of "old age" and "senility" labels, both of which declare elder status. Although both labels were assigned as causes of death between the 1870s and 1950s, neither of these death causes is medicolegally accurate. An individual does not die from being "old"; there is always a medical cause of death (e.g., heart failure, pneumonia). Likewise, no one dies of "senility," though a person may die of conditions associated with being "senile" (e.g., stroke). Therefore, neither "old age" nor "senility" is a valid medicolegal cause of death. Perhaps these "causes of death" are based on characteristics that are unique to the deceased individuals. Alternatively, such assessments may be more a function of the perceptions of those offering the assessments.

Research analyzed the 215 cases labeled as dying of "old age" and "senility." The primary focus of this study was to examine these cases and identify any traits and characteristics that are commonly shared in order to explain why these death causes were so labeled.

With respect to age, analysis revealed that the death cause label of "old age" was assigned to younger individuals, while "senility" was assigned to older individuals. This finding was statistically significant but
may be more a matter of age increasing over time than the oldest of the old exhibiting behaviors of senility. Not only is age a primary focus of study in this thesis, it is also the most apparent attribute. Analysis of this variable (age) revealed that ages ranged from 55 to 116, with 38.9% of cases dying before they reached the age of 80. Instead of age being an independent variable that determines the application of "old age"/"senility" labels, time was an intervening variable.

Gender was found to have no influence on the application of "old age"/"senility" labels as social constructions. Females have longer life expectancies, and this research is consistent. When examining a population of elders labeled as "old" or "senile," one might anticipate similar age patterns in both genders, though females will predominate.

Analysis of race/ethnicity revealed that this variable had no influence on the application of "old age"/"senility" labels. Although race implies some degree of potential marginalization and bias, it was not found to be statistically significant in the application of "old age"/"senility" labels. The ethnic/racial make-up of the population of elders reflects that of the elder cemetery population, which implies that there is little ethnic or racial influence in regards to the application of "old age" and "senility" labels.
Kinship support was gleaned by surveying those cases interred as isolates. Analysis of the cases buried alone revealed that the elder population mirrored the elder cemetery population. Once again, this implies that isolate status had no influence on the assignment of "old age" or "senility" as death causes. However, the person/name ratio of the elder population (2.91) was less than that of the elder cemetery population (3.04). This suggests fewer elderly in families of those labeled as "old" or "senile," which may, in turn, engender less empathy for the elderly.

Overall, few statistically significant patterns in the application of "old age"/"senility" labels were found. This suggests that the variables/attributes analyzed in this study may not be the essential motivations behind the application of "old age" and "senility" labels. This implies that the death-cause labels of "old age" and "senility" are compatible with the labeling theory in that labels are more a circumstance of the individual's status as perceived by others rather than the attributes that labeled individuals possess (Becker, 1963). Therefore, the labels of "old age" and "senility" are social constructions applied by those who had some opportunity to observe or know those so labeled. Specifically, this research asserts that labels are ultimately a consequence of the reciprocal relationship between the labeled individual and the surrounding society. Thus, while only a few statistically significant patterns
were revealed, nine out of the ten hypothesized correlations went in the predicted direction. Perhaps this reflects the nature of the social construction of labels and stereotypes, emphasizing the reciprocal relationship between the labeled individual and those surrounding the individual. Labels are dependent upon those surrounding the individual to perceive and accentuate the qualities/characteristics that are, themselves, not independently explanatory.

In conclusion, although parts of this study were compromised by a lack of information, making it necessary to formulate research questions to fit the available data, these limitations do not diminish the value of this research approach. Data gathered from Dodge Grove Cemetery records permitted the examination of the perceptions of "old age" and "senility" as social constructions in a historical context. The findings of this thesis are congruent with previous notions of elder perspectives, offering empirical insight into the construction and application of labels.
References

Appendix A

Elder Population Codebook

Variable #1: Surname (each number is dedicated to all those with the same surname)
- Ranges from 001 to 190

Variable #2: BWOthers (shows whether the case is buried with others of the same surname)
- Ranges from 0 to 1
 - 0 -- no, the case is buried as an isolate
 - 1 -- yes, the case is buried with others

Variable #3: Ethnicity (the ethnicity of each case as surmised by surname)
- Ranges from 01 to 16
 - 01 -- English
 - 02 -- German
 - 03 -- African American
 - 04 -- French
 - 05 -- Scottish
 - 06 -- Irish
 - 07 -- Eastern European
 - 08 -- Spanish
 - 09 -- Italian
 - 10 -- Middle Eastern
 - 11 -- Scandinavian
 - 12 -- Dutch
 - 13 -- Swedish
 - 14 -- Welsh
 - 15 -- Swiss
 - 16 -- Asiatic

Variable #4: Sex (the gender of the deceased)
- Ranges from 1 to 2
 - 1 -- Male
 - 2 -- Female

Variable #5: Age Year (the age of the deceased in years)
- Ranges from 055 to 116

Variable #6: Death Year (the year in which each case died)
- Ranges from 1873 to 1953

Variable #7: Death Era (the era in which each case died)
- Ranges from 01 to 17
 - 01 -- 1870-74
 - 02 -- 1875-79
 - 03 -- 1880-84
 - 04 -- 1885-89
 - 05 -- 1890-94
 - 06 -- 1895-99
 - 07 -- 1900-04
 - 08 -- 1905-09
 - 09 -- 1910-14
 - 10 -- 1915-19
 - 11 -- 1920-24
 - 12 -- 1925-29
 - 13 -- 1930-34
 - 14 -- 1935-39
 - 15 -- 1940-44
 - 16 -- 1945-49
 - 17 -- 1950-54
Variable #8: Death Month (the month in which each case died)

- Ranges from 01 to 12
 - 01 -- January
 - 02 -- February
 - 03 -- March
 - 04 -- April
 - 05 -- May
 - 06 -- June
 - 07 -- July
 - 08 -- August
 - 09 -- September
 - 10 -- October
 - 11 -- November
 - 12 -- December

Variable #9: Cause (the cause of death in each case)

- Ranges from 1 to 2
 - 1 -- Old Age
 - 2 -- Senility

Variable #10: Ethnicity 2 (collapsed category of the ethnic backgrounds of the deceased)

- Ranges from 1 to 4
 - 1 -- English (includes English, Scottish, Irish, and Welsh)
 - 2 -- Germanic (includes German, Eastern European, Scandinavian, Dutch, Swedish and Swiss)
 - 3 -- African American
 - 4 -- Other (includes French, Spanish, Italian, Middle Eastern, and Asian)

Variable #11: Death Era 2 (collapsed category of the era in which each case died)

- Ranges from 0 to 8
 - 0 -- 1870-1879
 - 1 -- 1880-1889
 - 2 -- 1890-1899
 - 3 -- 1900-1909
 - 4 -- 1910-1919
 - 5 -- 1920-1929
 - 6 -- 1930-1939
 - 7 -- 1940-1949
 - 8 -- 1950-1959

Variable #12: Death Month 2 (collapsed category of the month in which each case died)

- Ranges from 0 to 5
 - 0 -- January/February
 - 1 -- March/April
 - 2 -- May/June
 - 3 -- July/August
 - 4 -- September/October
 - 5 -- November/December
Appendix B

Elder Cemetery Population Codebook

Variable #1: Surname (each number is dedicated to all those with the same surname)
- Ranges from 0001 to 2806

Variable #2: BWOthers (shows whether the case is buried with others of the same surname)
- Ranges from 0 to 1
 0 -- no, the case is buried as an isolate
 1 -- yes, the case is buried with others

Variable #3: Ethnicity (the ethnicity of each case as surmised by surname)
- Ranges from 01 to 16
 01 -- English
 02 -- German
 03 -- African American
 04 -- French
 05 -- Scottish
 06 -- Irish
 07 -- Eastern European
 08 -- Spanish
 09 -- Italian
 10 -- Middle Eastern
 11 -- Scandinavian
 12 -- Dutch
 13 -- Swedish
 14 -- Welsh
 15 -- Swiss
 16 -- Asiatic

Variable #4: Sex (the gender of the deceased)
- Ranges from 1 to 2
 1 -- Male
 2 -- Female

Variable #5: Age Year (the age of the deceased in years)
- Ranges from 055 to 108

Variable #6: Death Year (the year in which each case died)
- Ranges from 1856 to 1983
Variable #7: Death Era (the era in which each case died)
- Ranges from 01 to 26
 01 -- 1855-59 10 -- 1900-04 19 -- 1945-49
 02 -- 1860-64 11 -- 1905-09 20 -- 1950-54
 03 -- 1865-69 12 -- 1910-14 21 -- 1955-59
 04 -- 1870-74 13 -- 1915-19 22 -- 1960-64
 05 -- 1875-79 14 -- 1920-24 23 -- 1965-69
 06 -- 1880-84 15 -- 1925-29 24 -- 1970-74
 07 -- 1885-89 16 -- 1930-34 25 -- 1975-79
 08 -- 1890-94 17 -- 1935-39 26 -- 1980-84
 09 -- 1895-99

Variable #8: Death Month (the month in which each case died)
- Ranges from 01 to 12
 01 -- January 07 -- July
 02 -- February 08 -- August
 03 -- March 09 -- September
 04 -- April 10 -- October
 05 -- May 11 -- November
 06 -- June 12 -- December

Variable #9: Cause (the cause of death in each case)
- Ranges from 1 to 3
 1 -- Old Age
 2 -- Senility
 3 -- All Causes, excluding Old Age and Senility

Variable #10: Ethnicity 2 (collapsed category of the ethnic backgrounds of the deceased)
- Ranges from 1 to 4
 1 -- English (includes English, Scottish, Irish, and Welsh)
 2 -- Germanic (includes German, Eastern European, Scandinavian, Dutch, Swedish, and Swiss)
 3 -- African American
 4 -- Other (includes French, Spanish, Italian, Middle Eastern, and Asian)
Elder Cemetery Population Codebook (continued)

Variable #11: Death Era 2 (collapsed category of the month in which each case died)
- Ranges from 01 to 14
 01 -- 1850-1859
 02 -- 1860-1869
 03 -- 1870-1879
 04 -- 1880-1889
 05 -- 1890-1899
 06 -- 1900-1909
 07 -- 1910-1919
 08 -- 1920-1929
 09 -- 1930-1939
 10 -- 1940-1949
 11 -- 1950-1959
 12 -- 1960-1969
 13 -- 1970-1979
 14 -- 1980-1989

Variable #12: Death Month 2 (collapsed category of the month in which each case died)
- Ranges from 0 to 5
 0 -- January/February
 1 -- March/April
 2 -- May/June
 3 -- July/August
 4 -- September/October
 5 -- November/December
Summary of Findings

<table>
<thead>
<tr>
<th>BW/Others</th>
<th>Elder Population</th>
<th>Elder Cemetery Population</th>
<th>Total Cemetery Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>88.4%</td>
<td>89.5%</td>
<td>88.3%</td>
</tr>
<tr>
<td>No</td>
<td>11.6%</td>
<td>10.5%</td>
<td>11.7%</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>77.7%</td>
<td>77.2%</td>
<td>78.1%</td>
</tr>
<tr>
<td>German</td>
<td>15.3%</td>
<td>18.5%</td>
<td>17.6%</td>
</tr>
<tr>
<td>Black</td>
<td>2.8%</td>
<td>1.5%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Other</td>
<td>4.2%</td>
<td>2.8%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>45.6%</td>
<td>52.0%</td>
<td>53.0%</td>
</tr>
<tr>
<td>Female</td>
<td>54.4%</td>
<td>48.0%</td>
<td>47%</td>
</tr>
<tr>
<td>Death Era</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1870-79</td>
<td>4.2%</td>
<td>1.4%</td>
<td>5.0%</td>
</tr>
<tr>
<td>1880-89</td>
<td>12.1%</td>
<td>1.9%</td>
<td>5.1%</td>
</tr>
<tr>
<td>1890-99</td>
<td>16.7%</td>
<td>3.8%</td>
<td>6.4%</td>
</tr>
<tr>
<td>1900-09</td>
<td>24.2%</td>
<td>7.2%</td>
<td>8.3%</td>
</tr>
<tr>
<td>1910-19</td>
<td>19.5%</td>
<td>10.9%</td>
<td>10.6%</td>
</tr>
<tr>
<td>1920-29</td>
<td>9.8%</td>
<td>14.6%</td>
<td>10.5%</td>
</tr>
<tr>
<td>1930-39</td>
<td>12.1%</td>
<td>18.3%</td>
<td>10.6%</td>
</tr>
<tr>
<td>1940-49</td>
<td>0.9%</td>
<td>20.3%</td>
<td>10.3%</td>
</tr>
<tr>
<td>1950-59</td>
<td>0.5%</td>
<td>21.5%</td>
<td>9.8%</td>
</tr>
<tr>
<td>Death Month</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan/Feb</td>
<td>23.3%</td>
<td>18.6%</td>
<td>17.9%</td>
</tr>
<tr>
<td>Mar/Apr</td>
<td>14.9%</td>
<td>18.0%</td>
<td>17.4%</td>
</tr>
<tr>
<td>May/June</td>
<td>15.8%</td>
<td>15.5%</td>
<td>16.2%</td>
</tr>
<tr>
<td>July/Aug</td>
<td>16.7%</td>
<td>16.0%</td>
<td>16.1%</td>
</tr>
<tr>
<td>Sep/Oct</td>
<td>14.0%</td>
<td>14.9%</td>
<td>16.2%</td>
</tr>
<tr>
<td>Nov/Dec</td>
<td>15.3%</td>
<td>17.1%</td>
<td>16.2%</td>
</tr>
<tr>
<td>Death Cause</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old Age</td>
<td>70.7%</td>
<td>0.0%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Senility</td>
<td>29.3%</td>
<td>0.0%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Other</td>
<td>0.0%</td>
<td>100.0%</td>
<td>98.7%</td>
</tr>
</tbody>
</table>