1-1-2003

The Effects of Practice with Decodable Texts on the Reading Fluency of Low-Achieving First Grade Children

Nicole Forsythe
Eastern Illinois University

This research is a product of the graduate program in School Psychology at Eastern Illinois University. Find out more about the program.

Recommended Citation
http://thekeep.eiu.edu/theses/1378

This Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.
THESIS/FIELD EXPERIENCE PAPER
REPRODUCTION CERTIFICATE

TO: Graduate Degree Candidates (who have written formal theses)

SUBJECT: Permission to Reproduce Theses

The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow these to be copied.

PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS:

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

[Signature]

Date: 6/5/03

I respectfully request Booth Library of Eastern Illinois University NOT allow my thesis to be reproduced because:

__

__

__

__

[Signature]

Date

This form must be submitted in duplicate.
The Effects of Practice with Decodable Texts on the Reading Fluency
Of Low-Achieving First Grade Children

BY

Nicole Forsythe

THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Specialist in School Psychology

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY
CHARLESTON, ILLINOIS

2003
YEAR

I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING
THIS PART OF THE GRADUATE DEGREE CITED ABOVE

4/5/03
Date

4/5/03
Date
The Effects of Practice with Decodable Texts on the Reading Fluency

Of Low-Achieving First Grade Children

Nicole Forsythe

Specialist Thesis

Eastern Illinois University
Abstract

This study examined the effect of a reading intervention using practice with decodable text on the reading fluency skills of four struggling first grade students. Participants received guided practice reading short decodable books twice a week for seven weeks. Pre and post-test standardized word reading scores were obtained using the Test of Word Reading Efficiency (TOWRE). Word reading fluency was assessed after each session by a list of words from the decodable texts. Results showed a marked improvement in each participant’s fluency score, with all four participants at least doubling their baseline fluency as measured by words read accurately per minute. Although the TOWRE pre and post-test scores were similar, the participants successfully identified and read the words using the phonic skills practiced during the intervention. Other positive influences on the participants included increased confidence in reading abilities, goal making, and increased enthusiasm. This study adds support to the existing information on the effectiveness of practice with decodable text as one part of phonics instruction.
Table of Contents

I. Introduction .. 4
 a. Phonics .. 4
 b. Fluency .. 7
 c. Decodable Text ... 8

II. Methods ... 11
 a. Participants .. 11
 b. Materials ... 12
 c. Design .. 13
 d. Procedures .. 14

III. Results ... 15

IV. Discussion .. 18

V. References .. 22

VI. Appendices ... 27
 a. Parental Consent Form (comparison group) 27
 b. Parental Consent Form (participants)............................... 28
 c. Example of the Word List ... 29
 d. Word List Errors ... 30
 e. Example of a Decodable Text .. 31
 f. Example of the Debriefing Statement 35

VII. Tables and Figures ... 36
 a. Figure 1: TOWRE Phonemic Decoding Efficiency Scores 36
 b. Figure 2: TOWRE Sight Word Efficiency Scores 37
 c. Figure 3: TOWRE Total Word Reading Efficiency Scores 38
 d. Table 1: TOWRE Pre and Post Test Scores 39
 e. Figure 4: Child 1’s Word List Progress 41
 f. Figure 5: Child 2’s Word List Progress 42
 g. Figure 6: Child 3’s Word List Progress 43
 h. Figure 7: Child 4’s Word List Progress 44
An important beginning reading skill is learning to decode, or translating printed words into their spoken equivalent. Because the English language is based upon the systematic relationship between letters and their corresponding sounds, it is imperative to equip early readers with the phonic skills of understanding the correspondences between a specific phoneme in spoken language and its letter or letter combination. These skills provide a solid foundation from which students can identify letter sounds and apply them when sounding out unfamiliar words. However, as the comprehension level of reading material increases, students not only need to decode accurately but also rapidly, which is known as reading fluency. Both phonic skills and reading fluency are necessary for students to better comprehend what is read and, consequently, become more skilled readers (National Reading Panel, 2000).

Phonics

Learning to decode requires children to recognize the relationship between phonemes (the minimal units of speech that have meaning) and the graphemes (letters and letter combinations) that make up written words. Beginning readers must first begin to develop phonemic awareness, which is the ability to recognize and separate the sounds in words and to categorize them in a way that permits an understanding of how words are spelled (Adams, Treiman & Pressley, 1998; & Chard, Pikulski, & Templeton, 2000). If children are unable to recognize that words consist of units of sounds, they will be unable to efficiently decode words.
Although decoding skills are only one component of reading, the National Reading Panel (2000) has concluded that knowing the alphabet and understanding the letter-sound relationships within words are essential skills for enabling readers to sound out complete words and to recognize the phonetic parts that compose words. Decoding by sounding out printed words is a more time-consuming way to identify words than that of the skilled reader; however, it is an accurate and reliable way for beginning readers to process written language. Torgesen and Mathes (2000) comment that decoding skills are a "critical step along the way towards effective reading skills." Children who are better able to segment words into their individual sounds are more likely to have stronger reading abilities (Blachman, 1991; Catts, 1991; Fox & Routh, 1983; Griffith & Olson, 1992; Juel, 1988; Perfetti, Beck, Bell, & Hughes, 1987). Moreover, a study by Gunn, Biglan, and Smolkowski (2000) showed that students who display reading difficulties are primarily having difficulty with the process of decoding the particular words of a passage. This recent finding concurs with that of Perfetti (1985) who concluded that the most common and debilitating reading problems are due to difficulty with decoding.

Furthermore, research has found that the ability to analyze, sequence, and remember individual phonemes is a crucial component in the progress of learning to read (Felton & Wood, 1989; Liberman & Shankweiler, 1985).

The National Reading Panel (2000) found that younger children in particular benefit from phonics instruction. Phonics is the instruction in which individuals learn the correspondences between letters and sounds (Adams, Foorman, Lundberg, & Beeler, 1998; Chard, Pikulski, & Templeton, 2000). The Panel conducted a meta-analysis that examined the experimental evidence on the impact of age and the effectiveness of
phonics instruction. The Panel’s meta-analysis examined studies on two groups of students. The first group was composed of kindergarten and first grade students while the second group was composed of second through sixth grader students. Although phonics instruction benefited both groups’ reading abilities, it had a greater impact on increasing the younger students skills ($d = 0.55$) than on increasing the older students’ skills ($d = 0.27$), where d equals effect size. Results of the meta-analysis showed that the younger students had more growth in their reading abilities at the end of the first year of the program than the older students. Additional research has found that children who do not master the foundation of reading skills by the third grade are much less likely to “gain the opportunities to further enhance their literacy skills” (Gunn, Biglan, & Smolkowski, 2000). Similarly, Adams, Treiman and Pressley (1998) concluded that the likelihood that a child will be a good or poor reader is to a considerable extent determined by his or her performance at the end of first grade.

Stanovich (1986) found evidence to support that students who were behind their peers early in school very rarely became strong readers. This is considered the Matthew effect. Students who are behind in school early on continue to fall further behind their peers; however, children who learn phonics and other reading skills early in their schooling continue to improve their reading skills and have more academic success. For example, Juel (1988) found a .88 probability that children (1st through 4th grade) who scored in the bottom quartile on the Iowa Reading Comprehension subtest in first grade will continue to have reading difficulties in the fourth grade. Furthermore, Juel found that “by fourth grade, the poor decoders still had not achieved the level of decoding that the average/good readers had reached by the beginning of second grade.” Lesgold and
Resnick (1982) found that word recognition in first grade predicts later reading comprehension skills in second grade. Likewise, Lundberg (1984) found a .70 correlation between first grade knowledge of phonemes and sixth grade reading achievement.

Fluency

Although much research has supported the importance of fluent word recognition, that is accurate and rapid decoding, for reading comprehension, specific research in the development of fluency for beginning readers is not extensive. Studies have found that phonic-based programs such as *Reading Recovery, Reading Mastery, and Success for All* have produced effective results; however, these studies have not isolated the individual components that are most effective for learning to read (Foorman, Fletcher, Francis, & Schatschneider, 1998). Research has provided some evidence that phonics instruction that focuses on the relationship between letters and sounds and provides repeated exposure/experience reading these patterns leads to automaticity or fluency in word recognition. This, in turn, gives the reader “immediate access to the meaning of the word, its grammatical role in a sentence, and its pronunciation” (Chard, et al., 2000).

Consequently, beginning readers who are able to quickly decode words have higher reading comprehension abilities (Deno & Markell, 1997; Beck & Juel, 1995; Fuchs & Deno, 1992; Stanovich, 1990; Vellutino & Scanlon, 1998). These readers are able to attend more to the meaning of the text and less to the act of decoding and blending sounds. As a result, these skills enable readers to better understand and process written information. This evidence demonstrates the importance for beginning readers to increase their reading fluency in order to improve their comprehension abilities.
Decodable Text

It is necessary to give children many opportunities to put their skills and reading strategies to use by practicing with age and/or ability appropriate reading materials to develop fluency in word recognition skills. There is a small but growing body of research that supports the use of decodable text for this reason. Decodable text has been described as possessing two qualities: “a higher proportion of words with phonically regular relationships between letters and sounds, and having a degree of match between the letter-sound relationships represented in text and those that the reader has been taught” (Mesmer, 2001). Messer defines phonically regular as a word for which its pronunciation can be predicted from its spelling. She expands this definition explaining that decodable texts can be a useful tool that allows readers to practice their phonics abilities and apply their knowledge of phonics principles to a short story or passage that further reinforces the connection between the sounds of words and written language (Mesmer, 2001).

Texts that include too many words with irregular patterns or high frequency words that may be phonetic exceptions to the language may distract beginning readers’ attention and make him or her unsure of the regular patterns of words (Adams, 1990 & Ehri, 1991). Similarly, Beck and Juel (1995) recommend that decodable texts be comprised of a majority of words that can be decoded using phonic principles to be most effective. The “Little Books” used in this study contain brief stories of short, decodable words with few high-frequency words, and are an example of materials developed specifically for beginning readers to practice phonic skills using meaningful text (McCormick, 2000; 2001).
Decodable texts have begun to attract the attention of several researchers who support their use as an effective learning tool. For example, Mesmer (2001) states that decodable text has three main purposes. One, it helps beginning readers identify words. Two, decodable texts have applications from phonics lessons and allow for practice with decoding strategies. And three, they highlight the relationship of letters and sounds. A study by Gunn, Biglan, and Smolkowski (2000) demonstrated that “students who received supplemental instruction in phonemic awareness, letter-sound correspondences, and daily practice reading decodable text were more skilled in decoding words than children who did not receive supplemental instruction focused on these skills.” In addition, these improvements were effective regardless of the students’ background and ethnicity. This study also found that the students’ decoding skills significantly predicted their oral reading fluency scores. Consequently, both decoding and oral reading fluency scores predicted better reading comprehension scores. Overall, the authors concluded that phonics instruction paired with practice with decodable text increased students’ decoding skills, which then improved their word recognition and reading comprehension skills (Gunn, et al., 2000).

Foorman et. al (1998) provided additional support for the use of direct instruction using decodable text. They found that first and second grade students who received “direct instruction in letter-sound correspondences and practice in decodable text” (direct code - DC condition) had significantly higher scores than students who received indirect instruction in the alphabetic code in combination with text (implicit code – IC) or those who received less direct instruction in spelling patterns in combination with text (embedded code – EC). The DC condition emphasized phonemic awareness, phonics,
and literature activities. The IC condition immersed students in a “print-rich environment” which is centered in a whole language approach. The EC condition emphasized teaching students phonemic awareness and finding spelling patterns in predictable books. Students in the DC condition had faster increases in word reading than the other conditions and also a greater overall word reading growth. Moreover, children in the DC condition who had low phonological processing at the start of the study showed more growth in word reading ability than students with low phonological processing skills who received instruction in the other conditions. This finding supports research that children who have difficulties reading due to the lack of phonological abilities can improve these skills through a curriculum that includes instruction in alphabetic principles and decoding (Foorman, et al., 1998).

In addition, several studies have found support for tutoring programs that concentrate on teaching students decoding skills. Vellutino et al. (1996) conducted a tutoring program with first grade students who were experiencing reading difficulties. He found that one-on-one tutoring for 30 minutes a day in “letter identification, phoneme awareness, word reading skills and practice in connected text helped the majority of these children become average readers.” Likewise, Torgesen (1997) found positive results with a one-on-one tutoring program. Students were taught phonological decoding strategies and then practiced these strategies through reading and writing tasks for 20 minutes a day for a total of 80 hours. Torgesen found that 75% of the first graders who were in the bottom 10th percentile in phonological skills as kindergarteners improved to achieve national averages after tutoring. Similar research conducted by Vadasy, Jenkins and Pool (2000) report that non-teacher tutors who use structured reading lessons
concentrating on decoding and phonological skills can produce improvements in the abilities of low achieving students.

The purpose of this study was to determine if guided, individualized practice with simple decodable texts would be effective in increasing the reading fluency of practiced words for first grade students who are experiencing reading difficulty. Also, because few studies have looked specifically at the effectiveness of decodable text on student's beginning reading abilities (Mesmer, 2000; National Reading Panel, 2000), I hope to add to the existing research on the usefulness of decodable text.

Methods

Participants

Four first-grade students from a single classroom in a small Mid-western city were participants in this study. The classroom teacher recommended these students for the study because of their difficulty with reading relative to other students in the class not receiving any special instruction. Participants were behind their peers in overall reading ability and especially with the process of decoding text in the classroom. Participants were not labeled as having a learning disability and were not in Reading Recovery or any other special reading program. Eight students from the same classroom were used as a comparison group. Parents completed an informed consent form giving permission for their children to participate in the study. (See Appendices A and B.)
Materials

The Test of Word Reading Efficiency (TOWRE) is an individually administered standardized measure of word reading fluency for decodable pseudo-words (Phonemic Decoding Efficiency) and sight words (Sight Word Efficiency) in which the number of words accurately identified in one minute is recorded. This measure is often used to "monitor growth in the efficiency of phonemic decoding and sight word reading skills during the early elementary grades" (Torgesen, Wagner, & Rashotte, 1999). The Test of Word Reading Efficiency was normed on 1,507 people (ages 6-0 to 24-11) in thirty states who were tested between the fall of 1997 and spring of 1998. Scores are presented in standard scores, age and grade equivalents, percentile ranks, and stanines. Alternate-form coefficients were reported at .93 and .94 for both subtests (Sight Word Efficiency and Phonemic Decoding Efficiency) and .96 for the total score, indicating high reliability. The test-retest reliability for children ages 6-9 years old ranged from .90 to .97 and interscorer reliability was reported at .99. In addition, the TOWRE's item discrimination for the relevant ages (6 and 7 year olds) was also high for the Sight Word Efficiency subtest (.72 and .75) and for the Phonemic Decoding Efficiency (.64 and .61) indicating that the items included in this subtest correctly differentiate among individuals who demonstrate a certain degree of word reading ability. This measure also has satisfactory concurrent validity. The TOWRE has shown a strong correlation with the Woodcock Reading Mastery Tests – Revised (WRMT-R). Findings show a .89 correlation between the TOWRE phonemic decoding efficiency and the WRMT-R Word attack and a .92 correlation between the TOWRE Sight Word Efficiency and WRMT-R Word Identification for first grade students.
Instructional materials used in the study included the “Decodable Little Books” (McCormick, 2000) which consist of 20, eight-page reproducible books that contain short words (primarily three or four letters) with consistent letter sounds. The first ten books present words with a single short vowel sound in each book, while the second ten books present several short vowel sounds per story and include a few additional words per page. Directions are provided with the materials. The “Fabulous Phonics Little Books” (McCormick, 2001) were also used. These texts follow the same format as the “Decodable Little Books,” but included thirty reproducible books which introduce a typical first grade phonic sequence of consonants and short vowels, initial and final consonant blends, consonant digraphs, long vowels with silent e, verb endings ing and ed, and selected diphthongs and vowel digraphs (McCormick, 2001). Both sets of little books were designed to be used sequentially, and were developed specifically to provide beginning readers with practice in decoding meaningful text. (For an example of the decodable text see Appendix E.)

Daily assessments of word accuracy and fluency were made using a Word List from the texts used in the intervention. The Word List was composed of two-to four-letter words taken from the decodable texts used in the intervention, and was developed for this study to collect baseline and treatment data. Scores were determined by the number of words students were able to accurately decode in one minute, the same procedure used by the TOWRE. (See Appendix C.)

Design

A single case design was used in this study. This type of design presents data in a clear format and has been useful in directly addressing classroom problems (Lundervold
& Belwood, 2000). Single case design consists of studying, collecting and evaluating the data of an individual, or several individuals, before, during and after an intervention or treatment plan. This ensures that treatment decisions are based upon data or evidence of intervention effectiveness. Additionally, single case design is popular for use in school settings because it helps to highlight the individual differences in children.

Procedures

For each of the four participants, baseline word reading fluency was determined on three different occasions using the Word List developed for this study. Scores were the number of words accurately read in one minute. Next, the TOWRE was administered to the four study participants and a comparison group of students (n = 8) in the same classroom, who brought back permission slips. These measures served as a pre-test of the students’ word reading abilities. The author of this study administered all assessments and instruction.

After the pretest, the four participants were met on an individual basis, two times a week, for ten to fifteen minutes per session, for seven weeks. During the sessions, two decodable little books were read to help the students develop the phonemic decoding strategy of sounding-out words and to build reading fluency. Students were allowed to pick one previously read book to read at the beginning of the session, and then the next book was introduced. First, the little book was read slowly and clearly, using a finger to follow the words as the individual sounds were blended together in order to model this technique for the student. The student was then given a copy of the book and asked to follow along with his/her finger as he/she read the text. When a student said a word incorrectly, the technique of blending the sounds together was modeled in order to help
the student arrive at the correct pronunciation. The student then reread the book to ensure that he/she could decode the text individually (McCormick, 2001). Students were able to take all “Little Books” home after the study. The Word List was administered after each session to assess word reading fluency. Readings of the Word List were taped to later determine accurate scoring and inter-rater reliability. After the conclusion of the intervention, the TOWRE was administered to the participants and classroom sample to determine if the reading lessons were effective in increasing word recognition fluency on the TOWRE.

Results

The TOWRE Sight Word Efficiency pre-test standard scores ranged from 96 to 99 for the participants and from 107 to 118 for the comparison group. The TOWRE Phonemic Decoding Efficiency pre-test standard scores ranged from 91 to 107 for the participants and 94 to 124 for the comparison group. The TOWRE Total Word Reading Efficiency pre-test standard scores ranged from 100 to 105 for the participants and 102 to 127 for the comparison group. (See Table 1 for TOWRE data.)

The TOWRE Sight Word Efficiency post-test standard scores ranged from 98 to 103 for the participants (an increase for all four participants) and from 109 to 130 for the comparison group. TOWRE Phonemic Decoding Efficiency post-test standard scores ranged from 102 to 106 for the participants (an increase for three of the four participants) and 105 to 126 for the comparison group. The TOWRE Total Word Reading Efficiency post-test standard scores ranged from 102 to 105 for the participants (an increase for three of the four participants) and ranged from 105 to 134 for the comparison group.
Figure 1 shows the difference between the TOWRE’s Phonemic Decoding Efficiency pre and post-test. Figure 2 shows the difference between the TOWRE’s Sight Word Efficiency pre and post-test. Figure 3 shows the difference between the Total Word Reading Efficiency pre and post-test scores. In all three tables the participants are the first four children. Standard scores for all three measures are reported in Table 1.

Fluency scores on the Word List showed marked improvement for each participant. Child 1’s baseline word list scores were 16, 24, and 24 words per minute, Child 2’s baseline scores were 19, 18 and 18 words per minute, Child 3’s baseline scores were 26, 24, and 28 and Child 4’s baseline scores were 19, 21 and 22. At the last reading session, Child 1 was able to correctly read 47 words per minute (See Figure 4). Child 2 improved to correctly read 53 words per minute (See Figure 5). Child 3 was able to read 51 words per minute on the last session (See Figure 6). Finally, Child 4 improved to 41 words per minute (See Figure 7).

The audiotaped sessions were listened to by a professor who scored the Word List and calculated correct words read per minute. Seven sessions for each student were checked (50% of all sessions). Interrater reliability on the Word List as determined through a Pearson’s R correlation was .99. (The few discrepancies between the raters were resolved by a joint scoring of the taped Word List performance.)

Child 1 was a friendly and talkative seven-year-old boy. He initiated conversation, seemed very motivated and wanted to sound out the words without help. He did not become frustrated very easily and paid attention the entire time we spent reading. In the first several sessions he had difficulty distinguishing the sound difference between b’s and d’s. However, when the letter was presented by itself, or the rest of the
word was covered, he could recognize the letter and then match the sound to finish the word correctly. This problem corrected itself as the sessions progressed and did not require additional work. When Child 1 reached a word he did not know, he decoded the sounds of each letter and then blended them together. He also seemed to be excited about reading, was proud about how many books he had read, and challenged himself to be able to read more words correctly from the word list.

Child 2 was a friendly, but quiet seven-year-old boy. He seemed shy and took a little longer than the rest of the students to warm up. He did not initiate conversation but was very polite. He was less confident of himself than his twin brother, Child 1, and wanted us to read the books together before he read them by himself even if the books were at or lower than his ability level. Child 2 paid attention throughout the entire session and was very cooperative. He was consistently able to recognize and produce the beginning sounds in words, but had more difficulty with the medial sounds. In the first several sessions he also had difficulty distinguishing the sound difference between b’s and d’s. However, once I isolated the letter, modeled sounding out the word and asked him to try the word again, he was able to quickly find the right pronunciation. This problem was also corrected after the first few sessions. Consequently, when he reached a word he did not know, he sounded out each letter then blended them together. Child 2 began to gain confidence in his ability to sound out words toward the end of the sessions, was less timid when decoding unfamiliar words, and wanted to read the books by himself the first time through. Throughout the intervention, he seemed to work harder after reassurance and praise.
Child 3 was a friendly and shy seven-year-old girl. She seemed to have stronger decoding abilities as compared to other participants and was able to catch on more quickly to new concepts. She paid attention for the entire session and attempted every word in the books. However, she didn’t seem to have a lot of confidence in herself and needed a lot of reassurance to know that she was doing a good job and pronouncing the words correctly. Child 3 was able to quickly recognize the sounds of individual letters, but it took her a little longer to correctly blend the sounds of a word together. When she came to a word she didn’t know, she silently mouthed the sounds in the word until she was sure of the word. She also used her finger to keep track of which word she was on.

Child 4 was an energetic and friendly seven-year-old boy. He had days when it was difficult for him to concentrate and he had a hard time sitting still in his chair. He often read a page and wanted to expand on how that page related to something that was happening in his life. For example, we read a book about a track race and he told me that he was a good runner and how his mom was watching a track meet. Although he didn’t need a lot of reassurance, he needed frequent redirection back to the task on hand. When he came to new words, he tried to guess what the words were based on their first letter instead of sounding out the word. As the sessions progressed he began to sound out the words. He also made the word list into a game and tried to challenge himself to read more words per minute.

Discussion

The Word List results showed that the reading fluency on words from the practiced texts improved for each of the participants after working with the decodable
texts. The number of accurate words read per minute at least doubled for each participant. The impact of the practice with decodable texts on the developing fluency for the Word List was indicated in two ways. First, following the three baseline data points, the fluency scores increased markedly for all four participants after instruction began. Second, although the same Word List was used for each assessment, the participants’ inconsistent errors across administrations suggest that the scores were the result of increased fluency and not memorization of the Word List (See Appendix D). The taped readings of the Word List also indicated that the participants did not memorize the words, but in fact applied a sounding-out strategy, which became more efficient over time. Thus, the increased scores on the Word List reflects the participants’ developing fluent recognition of short, decodable words.

The TOWRE scores for the participants did not show much change, although the change was positive for three of the four participants. Factors that could have affected this outcome may have included the short length of the program and the limited decoding skills the participants practiced in the sessions. The intervention included only twelve sessions spread over seven weeks, due to the grade school calendar, assemblies, field trips, and unexpected changes of the daily schedule (i.e. music class held earlier to practice for an assembly). Although this intervention focused on practice with phonemic decoding, the practice had little effect on the Phonemic Decoding Efficiency subtest of the TOWRE. During the intervention, the students mainly read the decodable texts that concentrated on short vowel sounds and words ending in silent e. On the TOWRE, the participants were able to correctly pronounce the majority of pseudo-words requiring these phonic skills; however, this did not result in a remarkable change in standard
scores. If the intervention had included additional phonic skills, the TOWRE scores may have shown a greater increase. The increased performances on both the Word List and the TOWRE resulted despite the lack of a suitable, quiet place for the sessions. Because there were no open rooms, the sessions were often held in the hallway. Students from other classes walked by and said "Hi" to the participants, classes walked by on their way to gym/music/etc., and on two sessions a student had a behavior outburst (crying, yelling) in the hallway.

Furthermore, the post-test TOWRE score may have been negatively influenced because the data were gathered in the last week of school when the students were excitable. Child 4, the one participant who did not show a gain on the Phonemic Decoding Efficiency subtest and the Total Word Reading Efficiency scale, was especially distractible that day. He looked around, fidgeted in his seat, and tried to talk about other unrelated events. This may have influenced his performance on the TOWRE. Moreover, there were two weeks the students were instructed only one day a week due to last minute changes in the first grade schedule. During these weeks (Sessions 8 and 9), the students’ progress on the word list plateaued. Also, Child 3 and 4 were each absent one day due to sickness. During the weeks of two sessions, each of the students had a slow, but steady increase in the number of words read per minute; however, during the single session weeks, that number stayed the same or decreased by one word.

This reading intervention seemed to have other positive effects beyond the increase in word reading scores on the Word List. All four of the participants remained enthusiastic throughout the reading program, were excited to participate in the reading sessions, and looked forward to taking the little books home to read. They were also
interested in the books and were both impressed and surprised by the number of books they were able to read. Because the program gave the students a chance to gain additional practice and be successful with easily decodable texts, it helped improve their self-confidence about reading. Additionally, the students began to challenge themselves on the Word List. They started to make goals about how many more words they would be able read correctly the next time and believed that they could achieve these goals.

This intervention was a successful complement to the ongoing reading curriculum. The practice with decodable text clearly increased the reading fluency for words practiced in the texts. Future studies examining the effect of decodable texts on reading fluency need to allow for a longer duration and increased frequency of the intervention. Working with the students for half or the entire school year would likely have had a greater impact on their reading fluency. Also, personnel should work with the students at least twice a week and preferably more. Students showed quicker Word List improvement when they were able to practice reading twice a week instead of only once. Another recommendation for future studies is that individuals should try to closely match the targeted phonics skills in the decodable books to the classroom phonics skill instruction to maximize the impact of the intervention on classroom performance. As well, students could be given the “Little Books” to take home for additional practice after each session, and including the Word List assessment in the intervention is suggested because increasing performance on the Word List clearly increased participant motivation.
References

Deno, S.L. & Markell, M.A. (1997). Effects of Increasing Oral Reading: Generalization...
The Effects of Practice With Decodable Text 23

The Effects of Practice With Decodable Text

Learning to Read are Reciprocal: A Longitudinal Study of First Grade Children.

Merrill-Palmer Quarterly. V. 33, p. 283-319.

Instruction. Teaching Exceptional Children. V.30, no6, p.20-25.

Stanovich, K.E. (1990). Concepts in Developmental Theories of Reading Skill:
Cognitive Resources, Automaticity, and Modularity. Development Review. V.
10, p. 72-100.

Stanovich, K.E. (1986). Matthew Effects in Reading: Some Consequences of Individual
Differences in the Acquisition of Literacy. Reading Research Quarterly. V. 21,
p. 360-406.

Stanovich, K.E. (1990). Concepts in Developmental Theories of Reading Skill:
Cognitive Resources, Automaticity, and Modularity. Developmental Review. V.
10, p. 72-100.

Torgesen, J.K. (1997). The Prevention and Remediation of Reading Disabilities:
Evaluating What We Know from Research. Journal of Academic Language
Therapy. V. 1, p. 11-47.

Teaching Phonological Awareness. Austin, Texas: PRO-ED.

Efficiency. Austin, Texas: PRO-ED, Inc.

Vadasy, P., Jenkins, J., & Pool, K. (2000). Effects of Tutoring in Phonological and
Early Reading Skills on Students at Risk for Reading Disabilities. Journal of
Learning Disabilities. V. 33, p. 579-590.

April, 2002

Dear Parent,

I am a graduate student in School Psychology at Eastern Illinois University. I am currently working with my professor Dr. Christine McCormick and your child’s teacher, Mrs. Schultz on a study of beginning reading skills. I ask your permission to briefly assess your child’s word reading skills. I will be asking your child to read a word list from a standardized measure (The Test of Word Reading Efficiency) for one minute, once during April and once during May. This information will only be used to describe the average class performance and your child’s name will not be recorded.

Please complete the bottom part of this page and return it to Mrs. Schultz as soon as possible in the enclosed envelope. If you have any questions, please call Dr. McCormick (581-6410) or myself (348-1831) and we will be happy to talk with you at any time.

Sincerely,

Nicole Forsythe
EIU Graduate Student

__
I give my permission for my child, ____________________________, to participate in this assessment.

Parent signature: ____________________________ Phone: ____________________________

Date: ____________________________
Dear Parent,

Your child has been selected by Mrs. Schultz to participate in a series of individualized lessons (of about 10 to 15 minutes each) on early reading skills to be taught on Wednesdays and Fridays during April and May. These activities will help your child to decode the sounds in printed words and recognize the letter sound correspondences within words. These skills will help your child develop his/her reading abilities.

I am a graduate student in School Psychology at Eastern Illinois University. I am currently working with my professor Dr. McCormick to learn how children begin to read. She teaches child development and preschool assessment courses in the Psychology Department at EIU and has recently written and developed a series of decodable “little books” to help children gain reading skills. I ask your permission to allow us to work with your child on these skill-building activities. As part of the lessons I will be helping your child learn to read decodable “little books.” Your child can bring home all the little books at the conclusion of the lessons.

Please complete the bottom part of this page and return it to Mrs. Schultz as soon as possible in the enclosed envelope. I believe that your first grader will enjoy the individual activities and I am looking forward to meeting with the children. If you have any questions, please call Dr. McCormick (581-6410) or myself (348-1831) and we will be happy to talk with you at any time.

Sincerely,

Nicole Forsythe
EIU Graduate Student

I give my permission for my child, ____________, to participate in the individualized lessons for developing knowledge of letter sound correspondences which will help develop word reading skills.

Parent signature: ___________________________ Phone: ___________________________
Appendix C: Example of the Word List

<table>
<thead>
<tr>
<th>Name: ___________________</th>
<th>Words Correct Per Minute: ___________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: ___________________</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>pet</td>
<td>skip</td>
</tr>
<tr>
<td>sat</td>
<td>set</td>
<td>eggs</td>
</tr>
<tr>
<td>hat</td>
<td>wet</td>
<td>hops</td>
</tr>
<tr>
<td>map</td>
<td>fed</td>
<td>gets</td>
</tr>
<tr>
<td>nap</td>
<td>bed</td>
<td>naps</td>
</tr>
<tr>
<td>cap</td>
<td>red</td>
<td>sits</td>
</tr>
<tr>
<td>can</td>
<td>leg</td>
<td>snack</td>
</tr>
<tr>
<td>ran</td>
<td>peg</td>
<td>stop</td>
</tr>
<tr>
<td>tan</td>
<td>egg</td>
<td>spill</td>
</tr>
<tr>
<td>tag</td>
<td>bug</td>
<td>plan</td>
</tr>
<tr>
<td>bag</td>
<td>rug</td>
<td>plum</td>
</tr>
<tr>
<td>wag</td>
<td>hug</td>
<td>clap</td>
</tr>
<tr>
<td>wig</td>
<td>fun</td>
<td>flip</td>
</tr>
<tr>
<td>fig</td>
<td>sun</td>
<td>flop</td>
</tr>
<tr>
<td>pig</td>
<td>run</td>
<td>glad</td>
</tr>
<tr>
<td>sit</td>
<td>up</td>
<td>frog</td>
</tr>
<tr>
<td>pit</td>
<td>on</td>
<td>trap</td>
</tr>
<tr>
<td>mit</td>
<td>it</td>
<td>crab</td>
</tr>
<tr>
<td>and</td>
<td>fix</td>
<td>stump</td>
</tr>
<tr>
<td>the</td>
<td>sip</td>
<td>vest</td>
</tr>
<tr>
<td>his</td>
<td>fit</td>
<td>must</td>
</tr>
<tr>
<td>hop</td>
<td>lap</td>
<td>sand</td>
</tr>
<tr>
<td>mop</td>
<td>had</td>
<td>pond</td>
</tr>
<tr>
<td>pop</td>
<td>top</td>
<td>drink</td>
</tr>
<tr>
<td>box</td>
<td>yes</td>
<td>king</td>
</tr>
<tr>
<td>fox</td>
<td>mad</td>
<td>bring</td>
</tr>
<tr>
<td>ox</td>
<td>tip</td>
<td>wing</td>
</tr>
<tr>
<td>got</td>
<td>hill</td>
<td>chop</td>
</tr>
<tr>
<td>hot</td>
<td>help</td>
<td>shell</td>
</tr>
<tr>
<td>not</td>
<td>nest</td>
<td>what</td>
</tr>
</tbody>
</table>
Appendix D: Word List Errors

Megan

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>tag</td>
<td>cat</td>
<td>tag</td>
<td>sat</td>
<td>tag</td>
<td>tag</td>
<td>bed</td>
<td>tag</td>
<td>bag</td>
<td>tag</td>
</tr>
<tr>
<td>Bag</td>
<td>tag</td>
<td>tag</td>
<td>fed</td>
<td>bag</td>
<td>map</td>
<td>bag</td>
<td>wag</td>
<td>wag</td>
<td>wag</td>
<td>wag</td>
</tr>
<tr>
<td>Wag</td>
<td>fed</td>
<td>fed</td>
<td>wag</td>
<td>pig</td>
<td>tag</td>
<td>tag</td>
<td>bag</td>
<td>wag</td>
<td>fed</td>
<td>fed</td>
</tr>
<tr>
<td>Fed</td>
<td></td>
</tr>
</tbody>
</table>

Noah

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>tag</td>
<td>tag</td>
<td>ox</td>
<td>ox</td>
<td>ox</td>
<td>ox</td>
<td>fun</td>
<td>bug</td>
<td>fix</td>
<td>fix</td>
</tr>
<tr>
<td>Bag</td>
<td>ox</td>
<td>ox</td>
<td>fed</td>
<td>fed</td>
<td>bed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wag</td>
<td></td>
</tr>
<tr>
<td>Map</td>
<td></td>
</tr>
<tr>
<td>Pet</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>Get</td>
<td></td>
</tr>
<tr>
<td>Ox</td>
<td></td>
</tr>
<tr>
<td>Mop</td>
<td></td>
</tr>
</tbody>
</table>

Evan

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wag</td>
<td>wag</td>
<td>tag</td>
<td>hot</td>
<td>tag</td>
<td>pet</td>
<td>pet</td>
<td>his</td>
<td>his</td>
<td>hop</td>
<td>leg</td>
</tr>
<tr>
<td>Wig</td>
<td>wig</td>
<td>bag</td>
<td>bag</td>
<td>bag</td>
<td>set</td>
<td>set</td>
<td>pet</td>
<td>pet</td>
<td>pet</td>
<td>pet</td>
</tr>
<tr>
<td>Pig</td>
<td>pig</td>
<td>wag</td>
<td>wet</td>
<td>mit</td>
<td>wet</td>
<td>wet</td>
<td>wet</td>
<td>wet</td>
<td>wet</td>
<td>wet</td>
</tr>
<tr>
<td>Fig</td>
<td>fig</td>
<td>fox</td>
<td>set</td>
<td>fed</td>
<td>fed</td>
<td>fed</td>
<td>fed</td>
<td>fed</td>
<td>fed</td>
<td>fed</td>
</tr>
<tr>
<td>Wet</td>
<td></td>
</tr>
<tr>
<td>Leg</td>
<td></td>
</tr>
</tbody>
</table>

Ethan

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tan</td>
<td>tan</td>
<td>tan</td>
<td>ran</td>
<td>map</td>
<td>map</td>
<td>pit</td>
<td>ran</td>
<td>tag</td>
<td>leg</td>
<td>fun</td>
</tr>
<tr>
<td>Tag</td>
<td>tan</td>
<td>tag</td>
<td>fed</td>
<td>tag</td>
<td>mit</td>
<td>bug</td>
<td>wet</td>
<td>peg</td>
<td>peg</td>
<td>peg</td>
</tr>
<tr>
<td>Sit</td>
<td>bag</td>
<td>fed</td>
<td>bed</td>
<td>bag</td>
<td>leg</td>
<td>leg</td>
<td>bug</td>
<td>bug</td>
<td>rug</td>
<td>hug</td>
</tr>
<tr>
<td>Not</td>
<td>wag</td>
<td>fed</td>
<td>leg</td>
<td>wag</td>
<td>leg</td>
<td>leg</td>
<td>bug</td>
<td>bug</td>
<td>hug</td>
<td>hug</td>
</tr>
</tbody>
</table>
Bina can take a ride on his bike.
Bing can ride a mile in the sun.

Bing has a long and fun ride.
Oh, oh! It is time to ride home.

Bing will ride past the stone gate.
Bing smiles when he gets home.

I can read:

bike home
ride stone
time mile
smile
May, 2002

Dear Parent,

Your child has now finished the individual lessons on practice with sounds, letters and decoding words. We hope that you have noticed that (child's name) has an increasing awareness of the sounds and letters in words and is better able to sound out printed words. Dr. McCormick or I will be calling you soon to specifically describe the skills (child's name) has been practicing in the lessons and will be happy to answer any questions you might have. We hope that (child's name) enjoyed the lessons.

Sincerely,

Nicole Forsythe
EIU Graduate Student

Christine McCormick, Ph.D.
EIU Professor
581-6410
Figure 1: TOWRE Phonemic Decoding Efficiency Scores
Figure 3: TOWRE Total Word Reading Efficiency Scores
Table 1: TOWRE Pre and Post Test Standard Scores

<table>
<thead>
<tr>
<th>Sight Word Efficiency</th>
<th>Pre-test</th>
<th>Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child 1</td>
<td>98</td>
<td>103</td>
</tr>
<tr>
<td>Child 2</td>
<td>99</td>
<td>102</td>
</tr>
<tr>
<td>Child 3</td>
<td>99</td>
<td>102</td>
</tr>
<tr>
<td>Child 4</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>Child 5</td>
<td>109</td>
<td>110</td>
</tr>
<tr>
<td>Child 6</td>
<td>107</td>
<td>109</td>
</tr>
<tr>
<td>Child 7</td>
<td>107</td>
<td>112</td>
</tr>
<tr>
<td>Child 8</td>
<td>109</td>
<td>113</td>
</tr>
<tr>
<td>Child 9</td>
<td>121</td>
<td>130</td>
</tr>
<tr>
<td>Child 10</td>
<td>106</td>
<td>115</td>
</tr>
<tr>
<td>Child 11</td>
<td>113</td>
<td>118</td>
</tr>
<tr>
<td>Child 12</td>
<td>119</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phonemic Decoding Efficiency</th>
<th>Pre-test</th>
<th>Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child 1</td>
<td>93</td>
<td>103</td>
</tr>
<tr>
<td>Child 2</td>
<td>97</td>
<td>104</td>
</tr>
<tr>
<td>Child 3</td>
<td>91</td>
<td>106</td>
</tr>
<tr>
<td>Child 4</td>
<td>102</td>
<td>107</td>
</tr>
<tr>
<td>Child 5</td>
<td>109</td>
<td>105</td>
</tr>
<tr>
<td>Child 6</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>Child 7</td>
<td>100</td>
<td>108</td>
</tr>
<tr>
<td>Child 8</td>
<td>94</td>
<td>109</td>
</tr>
<tr>
<td>Child 9</td>
<td>124</td>
<td>126</td>
</tr>
<tr>
<td>Child 10</td>
<td>107</td>
<td>113</td>
</tr>
<tr>
<td>Child 11</td>
<td>112</td>
<td>118</td>
</tr>
<tr>
<td>Child 12</td>
<td>115</td>
<td>111</td>
</tr>
</tbody>
</table>

(Child 1, 2, 3, and 4 are the study participants.)
The Effects of Practice With Decodable Text

<table>
<thead>
<tr>
<th>Total Word Reading Efficiency</th>
<th>Pre-test</th>
<th>Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child 1</td>
<td>95</td>
<td>104</td>
</tr>
<tr>
<td>Child 2</td>
<td>98</td>
<td>104</td>
</tr>
<tr>
<td>Child 3</td>
<td>94</td>
<td>105</td>
</tr>
<tr>
<td>Child 4</td>
<td>102</td>
<td>100</td>
</tr>
<tr>
<td>Child 5</td>
<td>111</td>
<td>109</td>
</tr>
<tr>
<td>Child 6</td>
<td>102</td>
<td>105</td>
</tr>
<tr>
<td>Child 7</td>
<td>104</td>
<td>112</td>
</tr>
<tr>
<td>Child 8</td>
<td>102</td>
<td>113</td>
</tr>
<tr>
<td>Child 9</td>
<td>127</td>
<td>134</td>
</tr>
<tr>
<td>Child 10</td>
<td>108</td>
<td>117</td>
</tr>
<tr>
<td>Child 11</td>
<td>115</td>
<td>122</td>
</tr>
<tr>
<td>Child 12</td>
<td>120</td>
<td>117</td>
</tr>
</tbody>
</table>

(Child 1, 2, 3, and 4 are the study participants.)
Figure 4: Child 1's Word List Progress
Figure 5: Child 2’s Word List Progress
Figure 6: Child 3's Word List Progress
Child 4: Word List Progress

Figure 7: Child 4's Word List Progress

Correct Words Per Minute

Reading Sessions