January 1986

The genera of Elatinaceae in the southeastern United States

Gordon C. Tucker
Eastern Illinois University, gctucker@eiu.edu

Follow this and additional works at: http://thekeep.eiu.edu/bio_fac

Part of the Biology Commons

Recommended Citation
http://thekeep.eiu.edu/bio_fac/184

This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.
THE GENERA OF ELATINACEAE IN THE SOUTHEASTERN UNITED STATES

GORDON C. TUCKER

(WATERWORT FAMILY)

Annual or perennial plants (up to 50 cm tall) of aquatic or moist terrestrial habitats. Roots fibrous; lower nodes usually with adventitious roots. Plants glabrous or glandular pubescent throughout, with unicellular or multicellular multiseriate capitate trichomes. Leaves opposite or decussate, entire or coarsely serrate; stomata anomocytic; 3 stipules scarious. Flowers small, actinomorphic,

Prepared for the Generic Flora of the Southeastern United States, a long-term project made possible by grants from the National Science Foundation and at this writing supported by BSR-8415637 (Norton G. Miller, principal investigator), under which this account was prepared, and BSR-8415769 (Carroll E. Wood, Jr., principal investigator). This treatment, the 112th in the series, follows the format established in the first paper (Jour. Arnold Arb. 39: 296–346. 1958) and continued to the present. The area covered by the Generic Flora includes North and South Carolina, Georgia, Florida, Tennessee, Alabama, Mississippi, Arkansas, and Louisiana. The descriptions are based primarily on the plants of this area, with information about extraregional members of a family or genus in brackets []. The two references I did not verify are marked with asterisks [*].

I thank Norton Miller and Carroll Wood for the opportunities provided by the Generic Flora Project and for their interest and assistance with this paper. Thomas J. Rosatti deserves special commendation for his help in the development of the present treatment. I thank Robert L. Wilbur, who initiated my interest in the Elatinaceae by suggesting that an appraisal of the affinities of the family might be an appropriate topic for a research paper in his Advanced Systematics course at Duke University. Thanks are extended to the staffs of the libraries of New York State, the Arnold Arboretum and the Gray Herbarium, and the Missouri Botanical Garden, and to Rosa Guagnolone, of the Instituto Botánico Darwinión, San Isidro, Argentina, for providing access to the many references needed. Thanks are offered to the curators at A, CCNL, GA, GH, LAF, NEBC, and NYS, who have sent specimens. Thomas J. Rosatti, William R. Linke, Jr., Jason and Joshua Tucker, Richard and James White, and especially Vicky Martin Tucker have helped collect living material of Elatine.

This treatment is published as Contribution Number 483 of the New York State Science Service.

3Biological Survey, New York State Museum, The State Education Department, Albany, New York 12230.

3Tetracytic, according to Cronquist and Metcalfe & Chalk. Microscopic examination of leaves from each of the following collections revealed in all cases an anomocytic arrangement (4–8 irregularly shaped subsidiary cells around the guard cells). Elatine Alisinastrum L.—U.S.S.R., Octjabreva et al. 5880 (A); E. americana (Pursh) Arnott—Connecticut, Bridgeport, Eames s.n., 6 Aug. 1899 (GH); E. minima (Nutt.) Fischer & Meyer—Connecticut, Lyme, Tucker & Linke 3176 (NYS), and Stonington, G. C. & J. R. Tucker 3217 (NYS); E. triandra Schkuhr—Wyoming, Lincoln Co., Payson & Armstrong 3434 (GH). Bergia texana (Hooker) Seub.—Louisiana, Red River Parish, SW of Crichton, Thieret 20618 (LAF), and Grant Parish, SW of Montgomery, Thieret 24749 (LAF).

hypogynous, borne singly or in small clusters in the axils of leaves. Sepals 2–5 [or 6], free or barely united basally. Petals membranaceous, 2–5, free. Stamens 2 [or 3]–6–10, in 1 or 2 whorls, the outer whorl alternate with the petals; anthers broadly ovoid, dehiscing by longitudinal slits; pollen prolate to sub-spheroidal, tricolporate, 2- or 3-nucleate when shed. Ovary [2 or] 3–5-locular, ovoid to depressed ovoid; placentation axile or basal, the partitions not reaching the summit of the ovary in some species of Bergia: ovules numerous, anatropous, bitegmic, tenuinucellar; megagametophyte (embryo sac) of the Polygonum type. Fruit a thin-walled septifragal capsule. Seeds ellipsoid to oblong, 0.5–1.5 mm long, with finely reticulate [smooth] surfaces; endosperm very little or none; embryo straight, filling nearly the entire seed; germination epigeal. Base chromosome numbers 6, 9. Type genus: Elatine Linnaeus.

A small, nearly cosmopolitan family of two genera, Bergia L. and Elatine, and about 35 species. Both genera are represented in the United States. One species of Bergia and two of Elatine occur in the Southeast.

The Elatinaceae are herbaceous or suffrutescent aquatic or wetland plants with opposite [whorled] simple [tripartite or quadripartite] leaves with paired interpetiolar stipules. The inconspicuous two- to five- [or six-]merous actinomorphic flowers are borne singly or in dichasia in the upper leaf axils. The small, thin-walled capsular fruits are septifragal, and the seed coats are characteristically strongly sculptured.

Adanson noted a similarity between Elatine and the Caryophyllaceae in their opposite leaves, small flowers, and tiny seeds. This view was also held by De Jussieu, De Candolle, Bentham & Hooker, Bessey, and Hutchinson. As early as 1827, however, Cambessèdes noted similarities between the Elatinaceae and the Guttiferae (sensu lato, including the Hypericaceae). Gray, in his discussion of the taxonomy of the family, emphasized its similarities to the Guttiferae. Niedenzu, and later Melchior in succeeding editions of Engler's Syllabus, placed the family in the Parietales. Cronquist, Takhtajan, and Thorne concurred in the placement of the Elatinaceae in the Theales and agreed that its affinities lie with the Guttiferae (Clusiaceae). Corner noted a similarity in the structure of the seeds of the two families. The sculpturing of the seed coat in the Elatinaceae is very much like that of Guttiferae subfam. Bonnettioidae, particularly the genus Ploiarium Korth.

The wood anatomy of Bergia suffruticosa Fenzl indicates that the most likely relationship of the family is with the Guttiferae (Carlquist). The following similarities are apparent: occurrence of simple perforation plates, presence of vasicentric tracheids and fibriform vessel elements, predominance of uniseriate rays, vertical orientation of scalariform vessel–ray pitting, absence of intraxylary phloem, presence of brownish compounds [tannins?] in the parenchyma, and occurrence of druses and solitary crystals.

Melikian & Dildarian, on the basis of anatomical and palynological studies, and Walia & Kapil, on the basis of embryological studies of the Frankeniaceae, a family usually placed in the Parietales, concluded that the Elatinaceae and the Frankeniaceae are closely related. However, because several of the similarities they listed (e.g., trinucleate pollen, bitegmic ovules, and monosporic
embryo sacs) characterize many families of angiosperms, a close relationship between the Frankeniaceae and Elatinaceae seems doubtful.

The family is little known chemically (Gibbs, Hegnauer). Several phenolic acids (delphinidin, ellagic acid, quercetin, cyanidin, kaempferol) have been reported from Bergia (species not indicated); saponins and alkaloids are absent from Bergia, while tannins occur in at least two species. Bergia suffruticosa has been found to lack alkaloids. Elatine appears to be poor in taxonomically interesting chemicals: E. gratioloides A. Cunn. contains no alkaloids, saponins, or leucoanthocyanins; E. hexandra (Lapiere) DC. contains ellagic acid but lacks other phenolic compounds. The petals of E. americana (Fernald) and E. minima (pers. obs.) are sometimes pinkish, probably because of anthocyanins. Gibbs reported druses and raphides to be absent in the family, while Metcalfe & Chalk noted the occurrence of cluster crystals in the endodermis and pith of Bergia (species not indicated), and Carlquist recorded druses and solitary crystals in the parenchyma of B. suffruticosa.

The family is of little economic importance. No species is recorded as being gathered for use as food or condiments, nor is any reported to be poisonous to humans or livestock. Bergia suffruticosa, 2n = 36, is employed in Pakistan in folk medicine and in Sudan as a poultice for broken bones.

Several species of Bergia are weeds in rice fields in the Old World, as are species of Elatine in California, Japan, and Java. The seeds and foliage of Elatine are eaten by ducks, and the plants are considered to be beneficial because they consolidate mud and provide cover for small fish. Several species (e.g., E. Hydropiper L. and E. triandra) are cultivated as "turf-forming" foliage plants in aquaria. They are reported to be easy to propagate from either cuttings or seed.

The family is poorly known taxonomically. A comprehensive worldwide revisionary study of Bergia has never been made. The only global monograph of Elatine appeared in the 1870's (Dumortier). Niedenzu's account of the Elatinaceae in Die Natürlichen Pflanzenfamilien is of limited use for the identification of specimens because of its synoptic nature. Most taxonomic investigation in this family has either involved floristics or been concerned chiefly with the description of new taxa. Most workers seem to have been familiar only with the species represented in their herbaria.

REFERENCES:

Bailon, H. Elatinaceae. Hist. Pl. 9: 218–221. 1888. [Affinities of the family; Bergia ammannioides and Elatine paludosa (Bell.) Seub. illustrated.]

BOLKOVSKIKH, Z., V. GRIF, T. MATVEJEVA, & O. ZAKHAREVA. Chromosome numbers of flowering plants. A. A. FEDOROV, ed. (Russian and English prefaces.) 926 pp. Leningrad. 1969. [Bergia and Elatine, 263; most chromosome counts through 1964; B. ammannioides Roth, 2n = 24; B. capensis L., 2n = 18; B. suffruticosa, 2n = 36; E. hexandra, 2n = 72; E. Hydrospiper, 2n = 40; E. triandra, 2n = 40.]

BREWBAKER, J. L. The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Am. Jour. Bot. 54: 1069–1083. 1967. [Elatinaceae, 1078; discussion, 1076; Elatine sheds trinucleate pollen (1 species examined), while Bergia sheds binucleate pollen (2 species examined). The trinucleate pollen of Elatine distinguishes it from all other genera of the Theales and supports a possible relationship with the Tamaricaceae but not with the Caryophyllaceae.]

——— & M. C. JOHNSTON. Manual of the vascular plants of Texas. ix + 1797 pp. Renner, Texas. 1970. [Elatinaceae, 1066, 1076; Elatine triandra and E. brachysperma both occur in “shallow water, central Texas.” Bergia texana is stated to grow “in ditches, swamps, marshes, and on mud about ponds and on wet banks in southern Texas.”]

EICHLER, A. W. Blüthendiagramme. 2 Theil. xx + 575 pp. Leipzig. 1878. (Reprinted
in 1954 by Otto Koeltz.) [Elatinaceae, 241–243, figs. 95, 96; floral diagrams of Elatine Alsinastrum, E. hexandra, E. minima, E. triandra, and Bergia amman-

ioides.]

ERDTMAN, G. Pollen morphology and plant taxonomy. Angiosperms. 539 pp. Stock-

[Elatinaceae, 159: Bergia anagalloides E. Meyer, fig. 91B: “The pollen grains in

Elatinaceae are ± different from the grains in Caryophyllaceae, Frankeniaceae, Ly-

thraceae, Tamaricaceae, etc.”]

[Elatinaceae, 1015, 1016.]

GIBBS, R. D. Chemotaxonomy of flowering plants. 4 vols. xx + 2372 pp. Montreal and

GLEASON, H. A. New Britton and Brown illustrated flora of the northeastern United

States and adjacent Canada. 3 vols. New York. 1952. [Elatinaceae, 2: 546, 547;

figures of Bergia texana, Elatine triandra var. americana and var. brachysperma;

taxonomy follows Fassett.]

GOODREY, R. K., & J. W. WOOTEN. Aquatic and wetland plants of the southeastern

United States. Dicotyledons. x + 933 pp. Athens, Georgia. [Elatinaceae, 328–330,

no illustrations; Elatine triandra var. americana is reported from western North

Carolina, northern Georgia, Mississippi, Tennessee, and Missouri; Bergia texana

from Illinois to Arkansas, Texas, Washington, and California.]

GORSHKOVA, S. G. Elatineaceae. In: B. K. SCHISCHKIN & E. BOBROV, eds., Fl. URSS 15:

N. LANDAU. Jerusalem). [Bergia (two species), Elatine (seven species); E. Aslina-

trum and E. triandra illustrated, pl. XIII-3, 4.]

Boston. 1848. [Elatinaceae, 217–220; Elatine minima (misidentified as “E. ameri-

cana”), pl. 95; Bergia texana (as E. texana), pl. 961; good descriptions, excellent

taxonomic history of the family.]

HEDGNAUER, R. Chemotaxonomie der Pflanzen. 5 vols. Basel and Stuttgart. 1969. [Ela-

tinaceae, 4: 60, 61.]

ology of angiosperms. New York. 1984. [Elatinaceae, 661; discussion of work of

WALIA & KAPIL.]

HITCHCOCK, C. L., & A. CRONQUIST. Vascular plants of the Pacific Northwest. Part 3:

441; detailed illustrations of Bergia texana and Elatine americana.]

[Elatinaceae, 106, pl. 62; Bergia serrata Blanco and Elatine triandra described,

illustrated; best published photographs of pollen of this family.]

London. 1959. [Caryophyllales; Elatinaceae, 427, 428; E. hexandra illustrated.]

JUSSEAU, A. L. DE. Genera plantarum. ed. 2. lxxix, xxiv + 526 pp. Zurich. 1791. [Bergia,

Elatine, 333; included in Caryophyllaceae.]

KNUTH, P. Handbook of flower pollination. (English translation by J. R. AISWORTH

tomatic self-pollination takes place in the small reddish-white flowers of this species,

the anthers dehiscing introrsely, and shedding pollen directly upon the three

stigmas.”]

LE MAOUT, E., & J. DECAISNE. 1868. Traité général de botanique descriptive et analy-

tique. viii + 746 pp. Paris. 1868. [Elatinaceae, 435, 436; habit, flowers, and seeds

of E. hexandra, E. octandra, and E. Hydropiper illustrated.]

and New York. 1892. [Elatinaceae, 230, 231.]
KEY TO THE GENERA OF ELATINACEAE IN THE SOUTHEASTERN UNITED STATES

General characters: small, soft, herbaceous or woody-based annual or subperennial plants growing in or near water; glabrous or glandular pubescent throughout; leaves
Plants glandular pubescent throughout; flowers 5-merous; sepals acute, with a conspicuous, thickened midrib; capsules ovoid. 1. Bergia.
Plants glabrous; flowers 2-4-merous; sepals obtuse, without a visible midrib; capsules globose or depressed globose. 2. Elatine.

Annual [or perennial], herbaceous [or suffrutescent], simple to much-branched procumbent to ascendent plants of moist, disturbed soils; often occurring on sand bars along rivers. Roots fibrous, much branched from a conspicuous taproot; adventitious roots usually formed in the axils of the lower leaves. Stems herbaceous but woody and thickened at base, glandular pubescent throughout. Leaves decussate, glandular pubescent on both surfaces [or glabrous], the margins serrate; stipules scarious, glandular pubescent. Flowers solitary or in dichasia in the axils of the leaves. Sepals 5, free, acute, mucronate, with a thickened midvein and scarious margins, glandular pubescent throughout. Petals 5, oblong, membranaceous, glabrous, whitish. Stamens 5 [or 10]; anthers ellipsoid; pollen tricolpate, subprolate to spheroidal, sexine reticulate to reticulate-polybrochate, bincnucleate when shed. Ovary ovoid, 5 [or 6]-locular [the partitions not reaching the summit in some Asian species], each locule with numerous ovules; stigmas 5; styles 5, very short. Seeds oblong, slightly curved, brown, obscurely reticulate [smooth]. Base chromosome number 6. Type species: B. capensis L. (Named for Peter Jonas Bergius, 1730–1790, Swedish botanist and student of Linnaeus.)

A genus of about 25 species, primarily of the Old World tropics. Three species occur in the New World: Bergia arenarioides Camb., in Brazil; B. capensis, 2n = 18, native to Africa and southern Asia, collected as an adventive on the Pacific coast of South America (Molau); and B. texana (Hooker) Seub., ranging from Illinois, Missouri, Arkansas (Desha County), and Louisiana (Bossier, Red River, St. Mary, and Grant parishes), westward to northern Mexico, southern California, and eastern Washington.

The center of greatest diversity in the genus is in eastern and southern Africa, where some 20 species occur. By contrast, there are only five species in southern Asia and two in Malesia and Australia. Bergia capensis, which ranges from southern Africa to India and Indonesia, is the most widely distributed species in the genus. It is also recorded as an adventive weed in rice fields in Spain and Portugal.

Niedenzu divided the genus into two sections. He placed Bergia texana in sect. BERGIA (sect. Dichasianthae Niedz.), in which the flowers are borne in axillary dichasia. Species of sect. MONANTHAE Niedz. are characterized by solitary axillary flowers.

Apparently nothing is known about the pollination biology of any species of Bergia.

About half the species of Bergia are aquatic; the remainder are plants of...
moist soils. According to D’Almeida, *B. capensis* has dimorphic roots. The plumose water roots lack root hairs but frequently have chloroplasts in the cortex and thus supplement the leaves as assimilatory organs. The stout whitish roots that anchor the plant in the muddy bottom of the pond or pool bear very few lateral roots but are almost completely covered by root hairs.

References:

Hooker, W. J. *Bergia texana*. Ic. Pl. **3**: pl. 278. 1840. [Original description (as *Merinea texana*).]

Small, aquatic or emergent, herbaceous annuals or short-lived perennials of marshes, streambanks, shores of lakes and ponds, mud flats, pools, ditches, and rice fields. Roots slender, soft, the exposed portions sometimes with chloroplasts in the cortical cells. Stems soft, chlorophyllous, with 5–11 air chambers visible in cross section; stems upright when growing underwater, more or less procumbent when growing on wet soil or mud. Leaves opposite, sessile or with short petioles, blades narrowly to broadly elliptic to nearly orbiculate, one-fourth to three-fourths as long as wide, entire or essentially so (with hydathodes on the margins at the ends of the veins), the apices rounded, the bases cuneate to somewhat rounded. Flowers solitary in the axils of the upper leaves. [2 or
3 [or 4]-merous. Sepals membranaceous, very pale green, inconspicuous. Petals the same number as sepals, membranaceous, pale greenish white, about as long as the sepals [small floral nectaries present in some species]. Stamens [2 or] 3–8; filaments about half as long as to equaling the petals; anthers tetrasperangiate (sometimes bi- or trisporangiate in cleistogamous flowers), broadly ovoid, the connective apex subacute, prolonged slightly beyond the anther locules; pollen tricolporate, spheroidal to subprolate, sexine granulate to reticulate, trinuculolate when shed. Ovaries broadly ovoid, [2 or] 3 [or 4]-locular, the partitions thin, fragile; placentation basal [axile]; styles 3; stigmas terminal, appressed to the ovary. Capsules subglobose or depressed ovoid, the walls thin, membranaceous, delicate, the seeds more or less visible within. Seeds cylindrical, straight or slightly curved, narrowly to broadly ellipsoid, the surface brown to yellowish brown, reticulate with a network of fine ridges forming hexagons [ovals]. Base chromosome number 9. Lectotype species: *E. Hydro- piper* L.; see Britton & Brown, Illus. Fl. No. U. S. & Canada. ed. 2. 2: 538. 1913; also see Hitchcock & Green. *(Elatine, a Greek plant name employed by Dioscorides and Tournefort and adopted by Linnaeus [Crit. Bot. 103. 1737; Philos. Bot. 144, 174. 1751]); also see Dumortier, Gray.*—WATERWORT, PIGMY MUDWORT.

A genus of about 25 species, interruptedly cosmopolitan in distribution, with species occurring on all continents except Antarctica. Ten species are native to North America and about 12 to Eurasia. There are five to seven species in South America, mostly in temperate and Andean regions. Three primarily European species occur in North Africa; none apparently grows in the central part of the continent, while two are reported from Zimbabwe and Namibia (Riley). Two species occur in India and Malesia; one, *Elatine gratioloides* Bentham, is found in Australia, New Zealand, and Fiji.

Two subgenera and three sections were named by Seubert, whose classification was followed by Niedenzu in *Die Naturlichen Pflanzenfamilien*. Subgenus *Potamopitys* (Adanson) Seub., containing only *Elatine Alismastrum* of Europe and North Africa, is characterized by having whorled leaves. The remaining species, all of which have opposite leaves, comprise subg. *Elatine* (subg. *Hydropiper* Moesz). Subgenus *Elatine* contains two sections. Section *Elatine* (sect. *Elatinella* Seub.), in which the flowers have six to eight stamens in two whorls, includes about eight species of Eurasia, *E. heterandra*, and South America (*E. ecuadoriensis*). The remaining species, which have two or three stamens in one whorl, comprise sect. *Crypta* (Nutt.) Seub. and occupy nearly the total range of the genus. All North American species (except *E. heterandra*, q.v.) are included in this section. *Elatine heterandra* may have either three or six stamens per flower (Mason), thus shedding doubt on the reliability of stamen number in classification.

Two species occur in the Southeast.† *Elatine americana* is known from col-

†The taxonomy used here follows Fernald (1917, 1941). An examination of numerous herbarium specimens (at A, CCNL, GA, GH, LAF, NEBC, and NYS) shows that *Elatine brachysperma* and *E. americana* are distinguishable on the basis of seed shape and pitting. Fassett (and Gleason) treated these species as varieties of the primarily Eurasian *E. triandra*.

1986] TUCKER, ELATINACEAE 479
collections in Jackson Co., North Carolina, and Vermillion Parish, Louisiana. It ranges northward to Newfoundland and southeastern Manitoba. It is also common in Australia and New Zealand (Moore & Betche, Cheeseman, Good). More recently, Aston treated these Southern Hemisphere populations as a species, *E. gratioloides*, but her description and illustration seem indistinguishable from those of *E. americana*.

The other southeastern species, *Elatine brachysperma*, occurs from Georgia westward to California. Specimens have been seen from Georgia (Hancock and Oglethorpe counties), Alabama (Perry County), and Louisiana (Cameron and Lafayette parishes).

Two additional species occur in northeastern North America. *Elatine minima* has a wide range, from Labrador to the Northwest Territories, southward to Virginia and Illinois. *Elatine triandra*, a Eurasian and western North American species, has been collected in Skowhegan, Maine, and Brooklyn, New York; in both localities it is believed to be an introduction from Europe. Five species—two endemic to California—occur in western North America.

Plants of *Elatine* grow as submersed or emergent plants in shallow fresh [brackish or alkaline] pools, lakes, ponds, and ditches. They often occur in artificial ponds that are seasonally drained or in natural pools that dry out. Many species show some adaptation to fluctuating water levels in having plants with different growth forms under water and on land. The most striking example of this dimorphism occurs in the European *E. Alismastrum*, the only species with whorled leaves. The upper, emergent portion of the stem bears whorls of leaves with ovate blades 1–2 cm long, while the submersed lower stem has leaves divided into four capillary segments, thus giving the appearance of 12 leaves per node. In the remaining species terrestrial and aquatic forms are less different. In *E. americana* and *E. brachysperma* submersed plants have longer internodes and longer, narrower leaf blades and are darker green than littoral plants (Bicknell, Sculthorpe; illustrations in Fassett and Kupper & Gams).

Knowledge of the pollination biology of *Elatine* is incomplete. Cleistogamous underwater flowers are present in many species (Duncan recorded them in populations of *E. americana* in Georgia). Chasmogamous flowers have small nectaries, but no report of insect visitors has been found. Self-pollination in *E. hexandra*, $2n = 72$, is effected as the filaments elongate, bringing the anthers into contact with the stigmas (Hutchinson, 1955; Knuth). Self-pollination has been observed to occur in the same manner in plants of *E. minima* collected and grown indoors at the New York State Museum (collection from Stonington, Connecticut, G. C. & J. R. Tucker 3217 [nys]). In the cleistogamous flowers of *E. triandra*, $2n = 40$, and *E. hexandra* the anthers are brought into contact with the stigmas as the filaments elongate. The pollen grains germinate *in situ*, and the tubes grow through the anther wall into the stigma (Frisendahl).

References:

Under family references see ADANSON, BACKER, BAillon, BENTHAM & HOOKER, BOLKHOVSkiKH et al., BREWBAKER, CAMEsSéDES, DE Candolle, COOK (1968, 1978), COOK et al., CORNER, CORrell & CORrell, CorREll & Johnston, CRONQUIST, Davis, DUMORTIER, Eichler, ErdTMAn, FERNALD, Gibbs, GleASON, GODfrey & Wooten,
ELATINACEAE

GORSCHKOVA, GRAY, HITCHCOCK & CRONQUIST, HUANG, HUTCHINSON, JUSSIEU, KNUTH, LE MAOUT & DECAISNE, LUBBOCK, MASON, MELIKIAN & DILDARIAN, METCALFE & CHALK, MOLAU, MONZ, NIEDENZU, RADFORD et al., RENDLE, RILEY, SCULTHORPE, STEYERMARK, TAKHTAJAN, and THORNE.

ARBER, A. Water plants. xvi + 436 pp. Cambridge, England. 1920. [Elatine, 245; germinating seed of E. hexandra showing the circle of root hairs that surrounds the minute radicle, fig. 158.]

CAJANDER, V.-R., & R. IOHTOLA. Mercury in some higher aquatic plants and plankton in the estuary of the River Kokemäenjoki, southern Finland. Ann. Bot. Fenn. 21: 151–156. 1984. [Highest concentrations of mercury detected in E. triandra, E. Hydropiper, E. orthosperma Duben; average, 0.80 parts per million, dry weight.]

DUNCAN, W. H. New Elatine (Elatinaceae) populations in the southeastern United States. Rhodora 66: 47–53. 1964. [E. triandra in granite outcrop pools in the Georgia Piedmont; comments in difficulties in assigning these plants to either E. americana or E. brachysperma sensu Fernald.]

FASSETT, N. C. Notes from the herbarium of the University of Wisconsin—XVII. Elatine and other aquatics. Rhodora 41: 367–377. 1939. [E. brachysperma and E. americana treated as varieties of E. triandra.]

——. Elatine americana and E. triandra. Ibid. 43: 208–211. 1941. [Defense of specific status of E. americana; differences in placentation and leaf shape from the primarily Eurasian E. triandra.]

1975. [Elatine, 141, 142; E. hexandra and E. Hydropiper found in Quaternary deposits at several localities in the British Isles.]

HEUSSEN, C. J. Pollen and spores of Chile; modern types of the Pteridophyta, Gymnospermas, and Angiospermas. xiii + 167 pp. 60 pls. Tucson, Arizona. 1971. [Elatine chilensis. 33, 34, pl. 27.]

KERNER von MARILAUN, A. Natural history of plants. (English translation by F. W. OLIVER et al.) 2 vols. Glasgow. 1904. [Elatine Hydropiper, 2: 868; seeds of this species are common in mud carried on the feet of birds. This appears to be the source of the statement repeated by later authors (e.g., ARIBER) that Elatine is dispersed by waterfowl.]

MOORE, C., & E. BETCHE. Handbook of the flora of New South Wales. xxix + 852 pp. Sydney. 1893. [Elatinaceae, 33, 34; E. americana recorded from southeastern Australia; cf. ASTON, who treated these plants as E. gratioloides.]

MÜLLER, F. Untersuchungen über die Struktur einiger Arten von Elatine. Flora (Regensburg) 60: 481–496, 519–526. 1877. [Classical anatomical study of vasculature
of *Elatine Alsinastrum* and *E. Hydropiper*. Line drawings of nodal anatomy and floral vascularization. One trace per leaf; stipular traces lacking.]

Muenscher, W. C. Aquatic plants of the United States. x + 374 pp. Ithaca, New York. 1944. [*Elatine*, 262–265, fig. 117; *E. americana*, *E. californica*, *E. minima*, and *E. triandra*.]

———, J. K. DEAN, C. W. BOYLEN, & R. B. SHELDON. Field guide to the aquatic plants of Lake George, New York. New York State Mus. Sci. Serv. Bull. 426. iv + 65 pp. 1976. [*Elatine minima* is stated to occur at depths up to 1 m at several localities in Lake George.]

Salisbury, E. J. On the reproduction and biology of *Elatine hexandra* (Lapierre) DC. (*Elatinaceae*); a typical species of exposed mud. Kew Bull. 21: 139–149. 1967. [Intraspecific variation in seed production; effects of weather on establishment and reproductive success; characteristics of the seeds in relation to their probable mode of dispersal; investigation of the requirements for germination (postulated that the seeds contain an inhibitor that is gradually inactivated by light).]

Steyermark, J. A. Elatinaceae. **In**: J. A. Steyermark & Collaborators, Contributions to the flora of Venezuela. Fieldiana Bot. 28(2): 400–402. 1952. [*Elatine Fassettiana* Steyerm.; seed illustrated.]

Watts, W. A. The full-glacial vegetation of northwestern Georgia. Ecology 51: 17–33. 1970. [Fossil seeds of *E. minima*, a northern species not now known to occur in the southeastern U. S., found in sediments from the Georgia Piedmont dated at 22,900 B.P.]