Eastern Illinois University The Keep

Masters Theses

Student Theses & Publications

1972

A Comparative Analysis of the Mechanical Engineering Technology Curriculum as Offered in the Community Colleges of Illinois

Richard William Koppitz Eastern Illinois University

Recommended Citation

Koppitz, Richard William, "A Comparative Analysis of the Mechanical Engineering Technology Curriculum as Offered in the Community Colleges of Illinois" (1972). *Masters Theses*. 3920. https://thekeep.eiu.edu/theses/3920

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.

PAPER CERTIFICATE #2

TO: Graduate Degree Candidates who have written formal theses.

SUBJECT: Permission to reproduce theses.

The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied.

Please sign one of the following statements.

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

Date

Author

I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because OF POSSIBLE

PLAGIARISM.

5-19-72

A COMPARATIVE ANALYSIS OF THE MECHANICAL ENGINEERING TECHNOLOGY CURRICULUM

AS OFFERED IN THE COMMUNITY COLLEGES OF ILLINOIS

(TITLE)

BY

Richard William Koppitz

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science in Education

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS

> 1972 YEAR

I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED ABOVE

5,19,72 DATE

5-17.72 DATE

ACKNOWLEDGEMENTS

Appreciation is due to the many people whose assistance and cooperation made this study possible.

Special appreciation goes to Dr. C. E. Strandberg, thesis advisor; and Dr. R. B. Sonderman, department head; for their advice and guidance during the progress of this study.

Further acknowledgement is due Dr. C. A. Elliott, Dr. C. H. Erwin and Dr. P. L. Ward for their assistance in the preparation of this manuscript.

Recognition is given to the numerous educational respondents for assisting with this study.

Very special gratitude is expressed to my wife, Christine, for her encouragement and assistance.

TABLE OF CONTENTS

.

CHAPT	PAC	Έ
I.	INTRODUCTION TO THE STUDY	1
	Statement of the Problem	1
	Purpose of the Study	2
	Significance of the Study	2
	Hypotheses	3
	Limitations	4
	Definitions of Terms	4
II.	REVIEW OF LITERATURE	6
III.	PROCEDURE OF THE STUDY	13
	Preparation and Validation of the Instrument	13
	Selection of Respondents	14
	Collection of Data from Community Colleges	14
	Treatment of Data Received	15
IV.	DATA RECEIVED FROM INFORMATION FORMS	16
	Curriculum Title	16
	Curricular Participation by Industry	16
	Industrial Internship	17
	Drafting Credit	17
	Mathematics	18
	Physics	19
	Basic and Production Dimensioning	19
	Tool and Die Drafting	19

HAPTER	PAG	C
×	Graphics)
	Geometrical Construction	L
	Basic Engineering Geometry	L
	Intersections	2
	Developments	2
	Cam Drawing	2
	Gear Drawing	2
	Assembly Drawing	3
	Piping Drawing 2	3
	Charts, Graphs and Diagrams	3
	Technical Illustration	3
	Manufacturing Processes	4
	Industrial Fabrication	4
	Inspection and Testing Instruments	4
	Materials and Properties	5
	Design Projects	6
	Drawing Reproduction	6
	Computer Graphics	7
	Technically Related Areas	7
	Technical Electives	7
V. S	MMARY, CONCLUSIONS, RECOMMENDATIONS AND	
	PROBLEMS FOR FURTHER STUDY	9
	Summary	9
	Conclusions	5
	Recommendations	6
	Problems for Further Study	6

CHAPTER																														P	AGE
BIBLIOGR	APHY	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	38
APPENDIX	A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
	Intr	cod	luc	eta	ory	1	let	tte	er	to	o t	he	e E	Edu	ica	ti	lor	na]	1 1	Ins	st	Ltı	it:	io	n	•	•	•	•	•	43
	Foll	Loi	v-1	ıp	Le	eti	e	c t	0	tł	ne	Ec	iud	at	ic	ona	1	Ir	nst	tit	tut	tic	on	•	•	•	•	•	•	•	44
	Info	ori	nat	110	on	Fe	ori	n f	or	c t	he	e E	Edu	ica	ti	or	na]	1]	Ins	st:	Ltı	uti	Loi	n							45

LIST OF TABLES

TABLE	×	1	PA	GE
I.	Proposed Mechanical Technology Curriculum	•	•	7
II.	Suggested Two-Year Machine Design			
	Technology Curriculum	•	•	8
III.	How Technician and Engineering Curriculums Differ	•	•	11
IV.	Curriculum Titles	•	•	16
۷.	Curriculum Participation by Industry	•	•	16
VI.	Industrial Internship Practices	•	•	17
VII.	Drafting Courses Practices	•	•	17
VIII.	Drafting Credit Practices	•	•	17
IX.	Mathematics Course Practices	•	•	18
Χ.	Mathematics Credit Practices	•	•	18
XI.	Physics Course Practices	•	•	19
XII.	Physics Credit Practices	•	•	19
XIII.	Basic Dimensioning, Production Dimensioning			
	and Tool and Die Drafting Practices	•	•	20
XIV.	Geometric Construction, Basic Engineering Geometry,			
	Intersections, Developments, Cam Drawing, Gear Drawing	g,		
	Assembly Drawing, Piping Drawing, Charts, Graphs,			
	Diagrams and Technical Illustration Practices	•	•	21
XV.	Manufacturing Processes, Industrial Fabrication and			
	Inspection and Testing Instruments Practices	•	•	24

TABLE	PAGE
XVI.	Materials and Properties Practices
XVII.	Design Project Practices
XVIII.	Design Project Topics
XIX.	Technically Related Topic Practices
XX.	Technical Elective Practices

CHAPTER I

INTRODUCTION TO THE STUDY

Statement of the Problem

The engineering technician is assuming an ever increasing role in todays' technologically oriented society. This scientific and technological emphasis is creating countless career opportunities for the properly trained technician. The annual average of technician requirements for the period 1963-1975 is put at 86,000, of whom 54,000 are needed to fill new positions, 10,000 to replace deaths and retirements and 22,000 to make up for transfer losses.¹ The United States Office of Education also expresses this point of view:

The demand for people with technical skills is growing twice as fast as for any other group... There aren't enough applicants to fill technical jobs now. Yet, the United States government estimates well over 1,000,000 more will open by 1975.²

As with most states, the state of Illinois contains a large number of diversified industries. These industries require large numbers of trained technicians. In 1967, only two engineering technicians were graduated for every five engineers, while the United States needs two or three engineering technicians for each design

¹Clifford H. Doolittle, <u>Trends in Engineering Technician</u> <u>Enrollments and Graduates</u> (New York, New York: Engineering Manpower Commission of Engineers' Joint Council, 1967), p. 27.

²United States Office of Education, <u>25 Technical Careers You</u> <u>Can Learn in 2 Years or Less</u> (Washington: United States Government Printing Office, n.d.).

engineer.¹ These technicians can receive their academic education by attending a public technical institute, a private technical institute, or a community college. The community college today plays an important role in technician education, and its importance in this field is increasing.² How the community colleges of Illinois educate engineering technicians, in the field of mechanical engineering technology. is the focus of this study.

Purpose of the Study

The purpose of the study will be to ascertain:

1. What similarities and differences exist among schools regarding required drafting courses (i. e., technical illustration, tool and die drafting, etc.) and required technically related courses (i. e., manufacturing processes, pneumatics and hydraulics, etc.).

2. What duties the mechanical engineering technician is expected to perform, as illustrated by the schools' emphasis of particular technical areas.

Significance of the Study

Results of this study may prove significant to:

1. Community colleges engaged in upgrading their program.

¹American Society for Engineering Education, <u>The Engineering</u> <u>Technician</u> (Washington: American Society for Engineering Education, 1970).

²Walter J. Brooking, ed., <u>Career Opportunities - Engineering</u> <u>Technicians</u> (Chicago, Illinois: J. G. Ferguson Publishing Company, n.d.).

2. Members of state and local organizations who are concerned with the organization and administration of engineering technology programs.

 Prospective engineering technology teachers now receiving their education.

 Instructors and counselors in secondary schools offering vocational mechanical drafting.

5. Private commercial companies engaged in upgrading or instituting educational programs.

6. Parents and students interested in receiving information concerning engineering technology programs.

Hypotheses

 Required drafting courses will not differ significantly, from school to school, regarding basic cognitive and manipulative areas (i. e., geometric construction, production dimensioning, etc.).

2. Required drafting courses will differ significantly, from school to school, regarding the degree of emphasis placed upon each specialized area of drafting (i. e., technical illustration, descriptive geometry, etc.).

 Required technically related courses will differ significantly, from school to school (i. e., manufacturing processes, strength of materials, etc.).

Limitations

The study was controlled by the extent to which the actual responses of the educational institutions could be successfully measured through the use of the information form.

The study was limited to:

 Public-supported community colleges, in the state of Illinois, offering an associate degree program in mechanical engineering technology.

2. The two year terminal program and not the pre-engineering program. The role of the technician, and not the engineer, is the focus of this study.

3. The areas of mechanical drafting and technically related courses. Not included are the architectural, chemical, civil, electrical and structural areas of engineering technology.

Definitions of Terms

The following definitions refer to this study only:

Engineering Technology: That part of the technological field which requires the application of scientific and engineering knowledge and methods combined with technical skills in support of engineering activities; it lies in the area between the craftsman and the engineer in the part closest to the engineer.¹

¹American Society for Engineering Education, <u>The Engineering</u> <u>Technician</u> (Washington: American Society for Engineering Education, 1970), p. 1.

<u>Mechanical Engineering Technology</u>: Concerns the generation, transmission and utilization of mechanical energy and the design, manufacture, testing, operation and maintenance of all kinds of mechanical equipment, devices and tools.¹

Engineering Technician: One whose education and experience qualify him to work in the field of engineering technology.²

<u>Mechanical Drafting</u>: A systematical, graphical representation and dimensional specification of the design, production and use of products or systems produced by machines and tools.

<u>Community College</u>: A fully accredited two year state education institution, offering both college preparatory and vocational-technical programs.

<u>Terminal Program</u>: A program in which the student is to have concluded his academic education upon graduation, with the possible exception of refresher type courses.

²American Society for Engineering Education, <u>The Engineering</u> <u>Technician</u> (Washington: American Society for Engineering Education, 1970), p.1.

5

Walter J. Brooking, ed., <u>Career Opportunities - Engineering</u> <u>Technicians</u> (Chicago, Illinois: J. G. Ferguson Publishing Company, n.d.), p. 209.

CHAPTER II

REVIEW OF LITERATURE

There have been a number studies conducted in the field of graphics, but only a few have dealt with the mechanical technology program. In reviewing the literature, certain segments relating to this problem were noted.

The Curriculum Materials Laboratory at Mississippi State University published a guide in developing a mechanical technology program. Their curricular analysis concluded, relative to this study:

- The training of the technician is not of a limited or single skill type. Rather, his training should equip him with basic qualifications and the ability to accept broad responsibilities that will prepare him for entry into multiple employment areas within a field.¹
- 2. For the graduate technician, therefore, specialization and specific job information come through experience, a company training program, or the pursuit of higher education.²
- 3. Experience has shown that technical and supporting courses must be initiated immediately to successfully complete training in the allotted time. Inasmuch as technical and supporting courses comprise approximately two thirds of the total semester hours, they cannot be postponed until the second year or even the second semester.³

¹<u>A Guide For Use in Developing Training Programs in Mechanical</u> <u>Technology</u> (State College, Mississippi: State Department of Vocational Education, 1966), p.2.

> 2<u>Ibid</u>., p. 4. 3Ibid.

Table I indicates a proposed curriculum suggested by the

Curriculum Materials Laboratory at Mississippi State University.1

TA	B	L	E	I	
••	~	-		_	

First Semester	emester <u>Hours</u>	Third Semester	Semester Hours
Manufacturing Processes I	4	Hydraulics & Pneumatics	3
Materials of Industry	3	Metallurgy	3
Mechanical Drafting I	333	Inspection Techniques	3 3 2 3
Social Science (Economics)	3	Physics II (Heat, Light & Sound)	3
Technical Math I (Algebra)	3	Technical Math III (An. Geometry & Calculus	3 s)
English (Composition)	$\frac{3}{19}$	Industrial Organizations & Institutions	$\frac{3}{17}$
Second Semester		Fourth Semester	
Manufacturing Processes II	4	Strength of Materials	3
Mechanical Drafting II and	3	Motion & Time Study	3
Tool Design		Production Planning and	4
Physics I (Froperties	3	Problems	
of Matter & Mechanics)		Physics III (Electricity	3
Technical Math II	3	& Magnetism)	-
(Trigonometry)		English (Speech)	2
English (Technical Writing) 2	Industrial Psychology	2 <u>3</u> 18
Social Science (History)	$\frac{3}{18}$		18

Another proposed curricular outline was put forth by the Engineering and Technology Advisory Committee of the College of Engineering, at the University of Illinois. Table II illustrates the suggested curriculum.²

¹Developing Training Programs, p. 15.

²Engineering and Technology Advisory Committee of the College of Engineering, at the University of Illinois, <u>Machine Design</u> <u>Technology - A Suggested Two-Year Post-High School Program</u>, Engineering Technology Series, No. 4 (Urbana, Illinois, 1968).

TABLE II

SUGGESTED TWO-YEAR MACHINE DESIGN TECHNOLOGY CURRICULUM

First Quarter	Quarter Hours	Fourth Quarter	Quarter <u>Hours</u>
Mathematics I Manufacturing Processes I Materials of Industry Technical Graphics I Communications I Orientation	5 3 4 3 0 18	Technical Physics III Strength of Materials Metallurgy and Heat Treatment Technical Report Writin Economics of Industry Seminar	4 4 3 <u>0</u> 18
Second Quarter		Fifth Quarter	
Mathematics II Technical Physics I Manufacturing Processes II Technical Graphics II Communications II	5 4 3 <u>3</u> 18	Machine Design I Control systems Industrial Organization and Operation American Government Technical Elective* Seminar	5 4 3 3 0 18
Third Quarter		Sixth Quarter	10
Mathematics III Technical Physics II Applied Mechanics Mechanisims Computer Programing	5 4 3 4 2 18	Machine Design II Design Projects Psychology and Human Relations Technical Electives* Seminar Non-Technical Elective	4 5 3 0 <u>3</u> 18

*The technical electives should be courses in some area of specialization related to this program and relevant to the local needs.

Typical Technical Electives

Tool Design	Technical Graphics III
Digital Computer Principles	Statistics
Electrical Machines	Experimental Methods for
Instrumentation	Determining Stress

Note: Suggested classroom and laboratory contact hours were omitted from the table.

Dobrovolny cites the transformation from the earlier

drafting programs to the present machine design program:

In too many cases, the drafting program of 20 years ago has had the name changed to drafting technology or draftingdesign technology without changing the program at all.

Today the need hardly exists for a person trained as a draftsman was trained 20 years ago. There are many reasons for this, one being the tremendous advances in our technology that now require every member of the engineering manpower team to have greater cognitive skills in order to do his job.

The pure drafting job, where an individual either traces drawings or copies drawings of others, does not exist due to the sheer economics of the industrial cost structure.¹

Dobrovolny then advocates what the program of today

must include:

For the engineering technician to function properly . . . he must have the necessary cognitive skills to be able to be a designer. To be a designer he must be familiar with the materials of industry, manufacturing processes, communication skills, technical graphics, applied mechanics (statics, dynamics and strength of materials), mechanisms, metallurgy and heat treatment, economics of industry, computer programing, machine design and the design process.²

Physical structuring of the program, Dobrovolny believes,

is also a significant consideration:

In structuring a machine design technology curriculum, it becomes more and more apparent that a six-quarter curriculum is much more effective in producing the engineering technician than a four-semester program. It is much easier to break up the topics into meaningful pieces so as to provide the necessary sequencing for prerequisites as well as for horizontal and vertical articulation.³

¹Jerry S. Dobrovolny, <u>Drafting Technology Versus Machine</u> Design Technology, Technical Education, November, 1969, p. 11.

2Ibid., p. 23.

3Ibid.

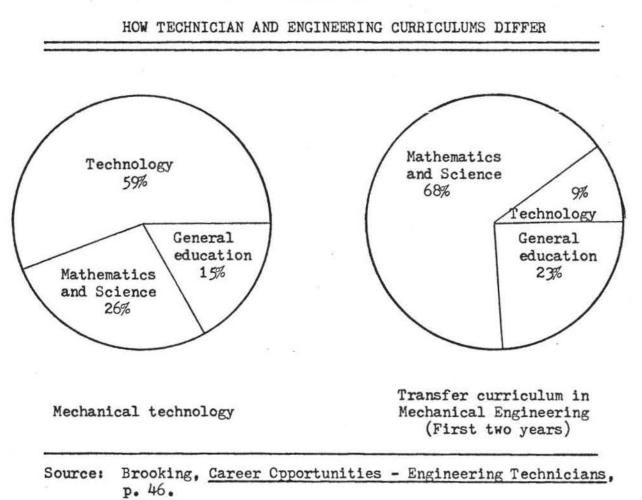
An analysis of various technical programs concluded the

following common characteristics:

- The program is directed toward the development of technical skills in specific fields of technology.
- 2. The program is aimed at preparing the student for employment immediately upon completing the training.
- 3. The curriculums are based on accurate and up-to-date analyses of the needs of the occupations in which
- graduates may expect to find jobs. They attempt to prepare the student for entry into any one of a group or cluster of closely related technician occupations. This gives the graduate some leeway in finding the job that suits him best.
- 4. The curriculums include both basic and applied mathematics and science, and basic and applied technology. Some of the applied technology is placed in the early part of the curriculum to provide greater interest for the student.
- The curriculums provide for developing the manipulative skills a technician needs in handling tools and machines.
- 6. The instruction emphasizes laboratory experience to teach scientific and technological principles by applying them to typical technical tasks.
- 7. The mathematics and science in the program are tied in with the technical instruction.
- Curriculums generally include instruction in oral and written communication pertinent to the field, and frequently provide courses in basic economics, industrial relations and other general education subjects.
- 9. The programs are rigorous and require students with a high enough level of ability to handle mathematics, science and technology on a college level perhaps slightly below that of engineering curriculums.¹

An evaluation of how technician and engineering curri-

culums differ is reviewed:


The first two years of the engineering curriculum are made up largely of mathematics and science courses, with relatively little application of technology to the special field.

¹Brooking, <u>Career Opportunities - Engineering Technicians</u>, p. 46. In contrast the technical institute type curriculum provides less science and mathematics, and applies these subjects to the technology. It also includes some applied technology in the first term, with increasing amounts in the later terms.

. . Although most technical institute type curriculums in a given field, mechanical technology for example, include much the same course content, they differ from one institution to another. The titles of courses vary greatly, the amount of basic mathematics and science may be different, and there is considerable variation in the course offerings in general education.¹

Table III graphically differentiates curriculums.

TABLE III

1 Ibid.

Dreyer made several conclusions based on the findings of his research, several of which relate to this study. Relative

to an engineering curriculum:

- 1. Objectives of spatial visualization, conventional practices, and orthographic projection ranked higher than the objectives of graphical solutions and computations, drawing techniques, and creativity.
- Development of drafting skills was not rated as being of primary importance, but was indicated as being worthy of limited to moderate emphasis. The only skill that received a high ranking was freehand sketching.
- 3. A balanced program of engineering graphics for mechanical engineers should provide experiences in the areas of descriptive geometry, technical drawing, and graphical mathematics.
- 4. A minimum acceptable program should include the following items of content: Orthographic projection; auxiliary views; point, line and plane relationships; intersections of surfaces; revolution; freehand sketching; sectional views; working drawings; applied geometry; lettering isometric drawing; charts and graphs; graphical calculus; and vectors.¹

The study was conducted in 1959. Areas covered in the study are now included in the mechanical engineering technology programs offered at most community colleges. An illustration of the technicians' changing duties, continuously encompassing additional activities originally assigned only to the graduate engineer.

¹S. F. Dreyer, "Engineering Graphics Courses From the Viewpoint of Mechanical Engineering Educators" (unpublished Doctor's dissertation, University of Oklahoma, Norman, 1959).

CHAPTER III

PROCEDURE OF THE STUDY

The physical scope of this investigation prohibited personal contact with each respondent. Information forms were devised to secure data for this study. Data received from the respondents served as the basis for this research. The accuracy of this study was directly ascertained from the information form responses.

Preparation and Validation of the Instrument

An analysis of the areas of mechanical drafting and technically related courses was made. Current school catalogs of those participating community colleges were reviewed to provide a preliminary concept of the topics emphasized in the technical program. Current school textbooks, both of a general and highly technical nature, were also used in the preparation of the instrument. The instrument was arranged into two major sections: 1) drafting areas; 2) technically related areas. Validation of the information form was performed by graphics professors Dr. C. Elliott and Dr. C. Erwin of Eastern Illinois University. Their comments guided final completion of the information form.

Selection of Respondents

The Illinois Department of Vocational Education supplied the name and addresses of community colleges in Illinois, which complied with the studys' limitations. Because of the limited number of possible participating respondents (resulting in decreased credibility of the potetial conclusions drawn) no additional limitations were applied. Factors such as school enrollment and the number of years the program had been in existance were not taken into account. A total number of forty schools were eligible. All were contacted for possible inclusion in the study.

Each school was contacted by letter explaining the purpose of the study. The schools were requested to complete the enclosed information form indicating what emphasis specific areas received at their sch ool. As an added incentive toward participation, it was noted that only participati ng institutions would receive the results of the study.

Collection of Data from Community Colleges

An information form was sent to each of the forty schools resulting in a return of twenty-one, or fifty-two per cent, of the information forms. Fourteen days after sending the initial letter and information form, a second information form was sent to each of the nineteen schools not responding. Four of the nineteen, or twenty-one per cent, returned forms. Fifteen of the nineteen, or seventy-nine per cent, did not respond. Twenty-five of forty schools, sixty-two per cent, responded to both letters explaining the problem and requesting their assistance. Fifteen of the forty schools, thirty-eight per cent, did not respond to the letters. All schools responding complied with the limitations of the study.

Treatment of Data Received

The data used in this study were obtained from twentyfive community colleges in Illinois offering a two-year degree program in mechanical engineering technology. Those responses indicated on the information form which were unusable were recorded as "no answer" during the collection of the data. The remaining usuable portions of the form were recorded. Responses were collected, tabulated and converted into percentages. Since a total of twenty-five schools responded, each school converted to a four per cent rating.

CHAPTER IV

DATA RECEIVED FROM INFORMATION FORMS

Curriculum Title

Terms listed in the respondents' curriculum titles are listed below in Table IV, with the respective percentages of use.

TABLE IV

TERMS	PER CENT
Technology	60
Design	44
Mechanical	40
Drafting	24
Machine	16
Engineering	8
Technician	4
Occupations	4

Curricular Participation by Industry

Curricular participation by industry was indicated by eighty-four per cent of the respondents. Table V indicates the frequency of these consultations.

TABLE V

PER CENT
4
12
4
32
24
16
8

Industrial Internship

Thirty-six per cent of the respondents maintained an industrial internship program. Table VI lists the range of semester hours credit awarded for such internship.

TABLE VI

SEMESTER HOURS	PER CENT
3	8
4	4
6	8
8	12
9	4

Drafting Credit

Listed below in Table VII are the number of drafting courses required and the percentage of respondents requiring these courses.

TABLE VII

COURSES	PER CENT
0	8
2	24
3	16
4	24
5	4
6	8
7	12
8	8

Credit awarded for these drafting courses areelisted in Table VIII.

TABLE VII

SEMESTER HOURS	PER CENT
0	8
6	16
8	8
9	8

SEMESTER HOURS	PER CENT
10	4
11	4
12	24
16	4
18	4
20	12
22	4
24	4
32	4

Mathematics

Ninety-six per cent of the respondents included mathematics in their program. Sixty-eight per cent required technical mathematics, twelve per cent required "general" mathematics and sixteen per cent required both technical and "general" mathematics. Table IX lists mathematical areas and the percentage of respondents which required that area.

TABLE IX

AREA	PER CENT
Basic math	36
Algebra	92
Trigonometry	92
Analytic geometry	76
Calculus	36
Slide rule	52
All six	8

Credit awarded for required mathematics courses are listed in

Table X.

TABLE X

SEMESTER	HOURS	PER CENT
0		4
6		12
8		28
9		4
10		32
11		8
13		8
16		4

18

Physics

Ninety-two per cent of the respondents included physics in their program. Seventy-two per cent required technical physics, sixteen per cent required "general" physics and four per cent required both technical and "general" physics. Table XI lists areas in physics and the percentage of respondents which required that area.

TABLE XI

AREA	PER CENT
Mechanics	88
Heat	88
Sound	52
Electricity	80
Magnetism	80
Light	52
All six	44

Credit awarded for required physics courses is listed in Table XII.

TABLE XII

SEMES	TER	HOURS		PER CENT	
	0			8	
	3		.*	16	
	4			4	
	6	*		4	
	8			60	
	10			8	

Basic and Production Dimensioning and Tool and Die Drafting

Table XIII indicates basic and production dimensioning methods and tool and die drafting areas. Following are the percentages of respondents which either reviewed or covered in depth each topic listed.

TOPICS BASIC DIMENSIONING	PER CENT REVIEWED	PER CENT IN DEPTH
	16	80
Aligned system	8	88
Unilateral system	52	32
Metric system	20	72
Auxiliary view	40	36
Tubing	40	44
Irregular curves	44	-
PRODUCTION DIMENSIONING		
Base or datum line	8	88
Chain	36	52
Polar coordinate	40	32
Tabular	40	40
True position	20 .	72
Standard parts	20	68
Interchangeable assemblies	20	72
Classes of fit	16	80
Unilateral tolerances	28	68
Bilateral tolerances	24	72
Limit system	12 '	80
Basic hole method	8	84
Basic shaft method	20	72
Angular tolerances	20	68
Splines	52	28
Tapers	48	36
Keys and keyslots	36	48
Slots and grooves	1414	40
TOOL AND DIE DRAFTING	· .	
Fundamentals	20	32
Basic design fundamentals	20	32
Jig and fixture details	12	40
Drill jigs	16	32 40 36 32 24
Milling fixtures	16	32
Turret lathe set-ups	16	24
Cutting tools	12	28
Dies	8	40

Graphics

Topics in graphics are listed in Table XIV along with the percentage of respondents which, 1) handle the topic as an informational unit, 2) require the student to graphically represent the item,

and 3) require both graphical representation and an informational

background dealing with the topic.

TABLE XIV

ï

	INFORMATIONAL	GRAPHICALLY	
TOPICS	UNIT	REPRESENT	BOTH
GEOMETRIC CONSTRUCTION			
Bisect a line	64	76	48
Divide a line into equal parts	64	80	52
Draw a curved line parallel			-
to another	56	72	44
Draw a line through a point	877		
perpendicular to a line	64	80	52
Bisect an angle	60	84	52
Construct an angle equal to a			
given angle	56	76	48
Construct a triangle with two			
sides and included angle	56	80	48
Construct a pentagon	44	64	36
Construct a hexagon with distance			
across flats	60	64	52
Construct an octagon with			
distance across flats	48	60	36
Construct a circle tangent to	¥		
two intersecting lines	56	88	52
Construct an arc tangent to			-
two circles	60	84	52
Rectify an arc	52	32	12
Construct an ellipse (two			
circle method)	64	64	48
Construct an ellipse (major			
and minor axes)	48	56	40
Construct a parabola	56	44	24
Construct a hyperbola	56	36	24
Construct an involute	52	28	24
Construct an evolute	56 52 44	28	24
Construct a helix	52 48	44	24
Construct a spiral	48	32	16
BASIC ENGINEERING GEOMETRY		di n	
True length of a line	52	92	52
Point projection of a line	52	92	52
Edgewise view of a plane	52	92	52
True size of a plane	52	92	52
Relationships between lines	56	88	52
Relationships of planes	52 52 52 52 52 52 56 56 55 25 56 52 ts 56	80	52 52 52 52 52 52 52 88 48
Relationships of lines and plane	es 52	84	48
Relationships of lines and point	ts 56	88	52

	INFORMATIONAL	GRAPHICALLY	(4)
TOPICS	UNIT	REPRESENT	BOTH
INTERSECTIONS	UNIT	TEL TED DIT	DOIN
Plane surfaces intersecting;			
Plane surfaces	52	80	44
Single curved surfaces	52 52 52 44	64	36
Warped surfaces	52	44	28
Double curved surfaces	ILL	44	24
Single curved surfaces intersect		44	24
Single curved surfaces	48	72	40
Warped surfaces	48		24
Double curved surfaces	40	36 40	24
Warped surfaces intersecting;	40	40	24
Warped surfaces	r6	28	20
Double curved surfaces	56 48		
		32	20
Double curved surfaces intersect	.	1.1.	00
Double curved surfaces	40	44	20
DEVELOPMENTS	-1 `	-	1.0
Oblique prism	50	76	48
Oblique cylinder	52	72	444
Oblique pyramid	52	64	40
Oblique cone	48	68	40
Truncated prism	56	68	48
Truncated cylinder	56 52 52 48 56 52 56 48	68	44
Truncated pyramid	56	64	44
Truncated cone		64	40
Sphere	52	44	32
Paraboloid of revolution	40	32	20
Rectangular transitions	52	60	40
Circular transitions	44	52	32
Circular and rectangular			
transitions	48	64	36
Triangulation	44	76	40
CAM DRAWING			
Radial type cams	52	80	44
Cylindrical type cams	56	60	32
Uniform motion	52 56 48	80	40
Modified uniform motion	56	60	28
Harmonic motion	48	60	40
Acceleration and deceleration			
motion	52	64	28
Variable motion	64	52	32
Oscillation motion	64	52	32
GEAR DRAWING			-
Spur gear and pinion	52	80	44
Bevel gears	52		24
Worm gears	52 52	56 56 64	24
Spur gear and rack	44	56	20
Gear teeth forms	48	64	28
Grant's odontograph method	52	28	16
, Contraction		~~	10

	INFORMATIONAL	GRAPHICALLY	
TOPICS	UNIT	REPRESENT	BOTH
ASSEMBLY DRAWING	UNIT	<u>Inder (Cho Divi</u>	born
Subassemblies	48	76	40
Layout	48	84	48
Outline	44	64	36
Installation	56	44	24
Exploded pictorial	64	44	28
Perspective	64	44	32
PIPING DRAWING	04		2
Piping symbols	40	36	16
Single line representation	40	40	16
Double line representation	44	28	
Isometric representation	44	40	12
Pipe sizes and types	48	40	20
Pipe fittings	48		24
Valves		36	20
	52	32	20
CHARTS, GRAPHS AND DIAGRAMS		1.0	
Rectilinear chart	32	48	20
Logarithmetic chart	36	40	16
Semilogarithmetic chart	40	32	12
Trilinear chart	44	8	4
Polar chart	40	16	4
Bar graph	36	40	20
Pie chart	40	28	12
Flow chart	40	28	12
Distribution chart	36	16	4
Three-dimensional chart	40	8	4
Concurrent coplanar vectors	40	52	24
Concurrent noncoplanar vectors	48	44	24
Noncurrent coplanar vectors	44	40	20
String polygon	40	40	20
Two variables with two parallel			
scales nomographs	28	28	8
Three variables with three paral	lel		
scales nomographs	28	20	8
Three variables with N or Z char	t		
nomographs	20	12	4
Four variables with four paralle	1		
scales nomographs	24	8	4
TECHNICAL ILLUSTRATION		-	
Freehand sketching	52	80	48
Oblique illustration	52	80	48
Axonometric illustration	40	76	40
Dimetric illustration	40	44	20
Trimetric illustration	44	36	20
One-point perspective	40	60	32
Two-point perspective	36	56	28
Line shading	40	28	
Smudge shading	32	16	20
Air brush shading			12
Photo retouching	32	20	12
Inking	28 44	12	12
Special equipment		28	20
shorter eduthmette	32	24	12

*2

Manufacturing Processes, Industrial Fabrication and Inspection and Testing Instruments

Table XV lists topics in manufacturing processes, industrial fabrication and inspection and testing instruments, along with the cooresponding percentage of schools which, 1) handles the topic as an informational unit, 2) requires the student to graphically represent the topic, and 3) requires the student to either perform or experience the topic as given.

TABLE XV

	NFORMATIONAL		PERFORM OR
TOPICS MANUFACTURING PROCESSES	UNIT	REPRESENT	EXPERIENCE
Internal machine operations	52	32	44
External machine operations	52	28	
Surface treatments	44	16	36 32
Casting processes and		10	52
techniques	40		8
Casting design considerations		12	
Forging processes and		*~ ,	
techniques	36		4
Forging design considerations		4	
Sheet metal processes and			
techniques	32		4
Sheet metal design	-		
considerations	32	8	
Sheet metal developmental			
layouts	28	20	8
Sheet metal seams and joints	32	8	4
INDUSTRIAL FABRICATION			
Welding processes	28		12
Welding joints	28	20	16
Welding design considerations		20	
Weldment symbols	32	20	
Riveting processes	32		4
Riveting design consideration		8	
Riveting symbols	28	12	
Brazing and soldering process	ses 28		8
Brazing and soldering design	1.11.11.12.1.1	12	<i>c</i>
considerations	28	4	
Brazing and soldering symbols		8	
Thread forms, series and clas		28	
Bolts, studs and screws	24	28	
Pins, retaining rings and key	s 28	24	

TOPICS	INFORMATIONAL UNIT	GRAPHICALLY REPRESENT	PERFORM OR EXPERIENCE
INSPECTION AND TESTING INSTRUMENTS		22.44	
Rules	36 36 28	12	40
Calipers	36	16	40
Vernier micrometer	28	8	40
Vernier caliper	28	12	32
Vernier height gauge	16	4	20
Gauge blocks	28	12	32
Optical comparator	20	0	24
Dial indicator	24	4	24
Go no-go gauges	28	12	20
Strainometer	16	0	12
Interferometer	8	4	4
Hardness testing	24	0	28
Impact testing	16	4	16
Endurance testing	20	4	8
Magnetic testing	20	4	8
Radiographic testing	16	4	0
Electrical testing	16	4	8
Ultrasonic testing	20	4	4

Materials and Properties

Table XVI contains topics in engineering materials and properties and the percentage of respondents which felt the topic as being necessary in their program.

TABLE XVI

	CENT	TOPICS I	PER CENT	TOPICS PH	ER CENT
MATERIALS					
Metals production	80	Cast iron	84	Aluminum	80
Carbon steel	84	Wrought iron	80	Magnesium	68
Alloy steel	84	Copper	76	Nickel	68
Stainless steel	84	Brass	72	Tin	68
Tool steel	80	Bronze	72	Zinc	68
Thermoplastics	64	Rubber	56		
Thermosetting		Resin- fiber	48		
plastics	68				
PROPERTIES					
Shock resistance	76	Metallic luster	-	Strength	84
Corrision resistance	72	Toughness	72	Plasticity	80
Electrical resistance	56	Energy capacity		Elasticity	80
Elec. conductivity	56	Elongation	68,	Ductility	84
Compressive strength	76	Fatique limit	72	Malleability	76
Modulus of elasticity	84	Rupture strengt	h 72	Brittleness	76
Modulus of toughness	52	Creep limit	52	Hardness	84
Modulus of resilience		Fussibility	40	Stiffness	76

Design Projects

Sixty-four per cent of the respondents included design projects in their program. Table XVII indicates the range of semester hours credit awarded for these design projects.

TABLE XVII

SEMESTER	HOURS	PER CENT
0		36
2		4
3		8
4		4
6		12
8		16
9		4
10		8
12		8

Table XVIII lists topics in the design area and the percentage of respondents which include these topics in their program.

TABLE XVIII

TOPICS	PER CENT
Design considerations	64
Design process	64
Model construction	20
Designer's characteristics	64
Individual projects	60
Group projects	48

Drawing Reproduction

Sixty-eight per cent of the respondents indicated the inclusion of drawing reproduction methods.

Computer Graphics

Sixteen per cent of the respondents indicated computer graphics as being contained in their program.

Technically Related Areas

Table XIX includes ten technically related areas and the percentage of respondents which, 1) review the area lightly, 2) cover the area in depth, or 3) devote one class solely to the area listed.

TABLE XIX

TOPICS	REVIEW	IN DEPTH	ONE CLASS
Mechanics	4	24	60
Strength of materials	4	20	68
Mechanism	0	28	64
Hydraulics and pneumatics	s 16	16	44
Heat treatments	20	32	20
Metallurgy	8	28	48
Quality control	24	36	4
Instrumentation and			
control	28	16	16
Technical report writing	4	4	. 76
Data processing and			
computer programming	20	16	28

Technical Electives

Table XX lists suggested technical electives and the percentage of respondents which request their students to enroll in the area listed.

TABLE XX

ELECTIVES	PER CENT
Basic drafting	4
Manufacturing processes	4
Machine tools	4
Welding	4
Architectural and mechanical	
systems	4

ELECTIVES	PER CENT
Computer programming	16
Electronics	8
College physics	.4
Labor economics	. 4
Chemistry	8
Psychology	4
Art appreciation	4
Photography	4
Logic	4

Twenty-eight per cent of the respondents stated that no provisions had been made for the students selection of electives since their program did not allow for electives of any type.

CHAPTER V

SUMMARY, CONCLUSIONS, RECOMMENDATIONS AND PROBLEMS FOR FURTHUR STUDY

Summary

The purpose of this study was to ascertain: 1) what similarities and differences exist among schools regarding required drafting courses such as technical illustration and required technically related courses such as manufacturing processes; and 2) what duties the mechanical engineering technician is expected to perform, as illustrated by the schools' emphasis of particular technical areas.

Educational respondents were restricted to community colleges in the state of Illinois offering a two-year degree program in mechanical engineering technology. Data were received from twentyfive schools through the use of information forms.

Curricular titles were diversified enough so that no one title took precedence over another. Sixteen per cent of the respondents indicated "mechanical technology" as their title. The word "technology" was included in the majority of responses.

The average frequency of curricular consultation by industry was twice per year within a range of consultation of every two months to never. The majority of respondents did not maintain an industrial internship program. Programs that were available averaged six semester hours of credit.

Two-thirds of the respondents required either two, three or four courses in drafting. Credit awarded for these courses averaged twelve semester hours within a credit range of zero to thirty-two semester hours.

Of the ninety-six per cent of schools which required mathematics, the majority indicated eight to ten semester hours of credit as being minimal. Three-fourths of the schools required technical mathematics courses as compared against math department courses. Algebra and trigonometry were found to be the most prevalent with a ninety-two per cent affirmative response.

Of the ninety-two per cent of schools which required physics, three-fourths indicated eight semester hours of credit as being minimal. Three-fourths of the schools required technical physics courses as compared against physics department courses. Mechanics and heat were found to be most prevalent with a ninety-five per cent affirmative response.

Basic and production dimensioning were found to be highly significant topics. On all items listed the range of affirmative responses was seventy-two to ninety-six per cent, with the majority of items closest to the ninety-six percentile. Four per cent of the respondents indicated having no instruction in these areas. Forty-four per cent of the respondents indicated having no tool and die drafting experiences available to their students. Thirty-six per cent indicated having extensive instruction in the area of tool and die drafting.

Basic geometrical construction was found to be a significant factor.' The majority of respondents indicated their use of such instruction. Advanced geometrical construction (i. e., spiral, hyperbola, involute, etc.) was approved of by one-third of the respondents. Eight per cent indicated no geometrical construction in their program.

Graphical representation of basic engineering geometry had an approval range of eighty to ninety-two per cent. The majority of respondents reported the utilization of basic engineering geometry in their program. Eight per cent indicated no basic engineering geometry in their program.

One-half of the respondents indicated the inclusion of intersectional drafting and developmental drafting in their program.

One-half to three-fourth's of the respondents reported the inclusion of cam drawing and gear drawing in their program. Oneeighth, or twelve per cent, stated no such instruction in these areas.

Assembly drawing was contained in the majority of the respondents' programs. Only eight per cent indicated having no such instruction in assembly drawing.

31

One-third of the respondents provided no instruction in the area of piping drawing. Most instruction in this area was of the informational type.

Of the various charts, graphs and diagrams listed, vectors received the highest affirmative response, yet, no majority of affirmative responses were recorded under this area. One-fourth of the respondents reported no instruction in any chart, graph or diagram.

Nine-tenths of the respondents stated that some form of technical illustration appeared in their program. The only areas to receive a majority of affirmative responses were freehand sketching, oblique and axonometric illustrations and one and twopoint perspectives.

Of the manufacturing processes listed, only machine operations as an informational unit received a majority. Surface treatments, casting, forging and sheet metal, respectively, declined in the percentage of schools which handle each as an informational unit, a graphical representation unit or in provided manipulative experiences.

Industrial fabrication received a one-fourth acceptance response as informational units. One-fifth of the schools required their students to graphically represent various fabrication methods and techniques. Almost one-half of the schools reported no instruction in this area. 32

Sixty per cent of the schools indicated the acceptance of various inspection and testing instruments. The more basic instruments (rules, calipers, etc.) took precedence over the more advanced equipment, both as informational units and available manipulative experiences. Of the various testing methods, hardness testing received a higher degree of acceptance than that of any other type.

Three-fourths of the respondents indicated they presented to their students seventy-five per cent or more of the materials listed. Only twelve per cent stated instruction dealing with these materials was not available at their school.

A majority of the responses stated they included a minimum of seventy per cent of the properties of materials listed. Onefifth stated having no instruction in this area.

A wide range of design projects was reported by two-thirds of the respondents. Six to eight semester hours of credit was determined as being the average. Individual projects were preferred over group projects, and the area of model construction received only a one-fifth acceptance response.

Two-thirds of the respondents indicated the inclusion of drawing reproduction methods in their program.

Computer graphics received less than a one-fifth response.

With an acceptance response of eighty-eight per cent, the area of mechanics had two-thirds of the respondents devoting a class solely to the topic. Nine-tenths of the respondents approved having a strength of materials area in their program. Two-thirds reported devoting one class solely to this area.

Mechanism was approved of with a nine-tenths affirmative response. Two-thirds devoted one class to this topic only.

Three-fourths of the respondents reported hydraulics and pneumatics as being in their program. One-half of the total respondents provided one class for this area only.

Heat treatments which received an approval response of three-fourths, was covered in depth by one-third of the respondents.

With an approval rate of eighty-four per cent, metallurgy had one class provided by one-half of the respondents.

Two-thirds of the respondents reported quality control as being in their program. One-third of the total respondents covered this area in depth.

Instrumentation and control, which received a two-thirds approval response, had one-fourth of the respondents covering this material lightly.

Technical report writing, while receiving an eighty-four per cent approval response, had three-fourths of the total respondents treating it as one whole class.

Two-thirds of the respondents approved of data processing and computer programming. A total of one-fourth of the respondents devoted one class solely to this area.

Technical electives which received more than a four per cent response were computer programming, electronics and chemistry. Onefourth of the respondents had no provisions for electives.

Conclusions

This study was controlled by the extent to which the actual practices of the responses could be measured through the use of information forms. The following conclusions are drawn from the data obtained from the respondents:

1. No geographical preference within the state of Illinois can be determined relative to the location of the respondents.

2. Mathematics and physics are as important to the program as those subjects which are directly, technically related.

Basic areas of drafting were widely accepted and taught.

 Course availability relative to unique areas of drafting followed no consistent pattern.

5. The emerging area of computer graphics is not incorporated into the vast majority of programs.

6. Mechanics, strength of materials, mechanism, metallurgy, engineering materials and its' properties have become widely accepted as integral units of most programs.

7. Areas of quality control, instrumentation and control, technical report writing and data processing/computer programming have each received increased emphasis.

8. A lessened degree of general acceptance can be ascribed to the areas of manufacturing processes, industrial fabrication and manufacturing production measurement instruments.

Recommendations

Relative to community colleges in Illinois offering a twoyear degree program in mechanical engineering technology, recommendations based on findings of the study include:

 The establishment of a formal relationship between schools for the purpose of formulating, reviewing and establishing instructional guidelines and policies.

2. Greater interschool uniformity of technically related laboratory instruction to more closely reflect state, rather than local, requirements.

3. Increased emphasis in teaching speciality areas of drafting.

 Greater accentuation of manufacturing processes and industrial fabrication methods.

 Encourage academic participation of industry through wider utilization of industrial internship programs and curricular consultation by industry.

Problems for Further Study

The following problems were noted during the progress of this study. Relative to community colleges in Illinois offering a twoyear degree program in mechanical engineering technology, suggestions for further study include:

1. What characteristics, relative to personality, background and interests, can be established of the students entering the mechanical engineering technology program? 2. What positions do mechanical engineering technology graduates now hold, how successful have they been and what are their opinions of the academic instruction they received?

3. What affect does the past enrollment in a high school vocational program have upon the success of a mechanical engineering technology student?

4. What is the status of mechanical engineering technology instructors regarding their academic and trade preparation, class rank, salary, tenure and other similiar factors?

BIBLIOGRAPHY

.

SELECTED BIBLICGRAPHY

A. BOOKS

- American Society for Engineering Education, <u>The Engineering Technician</u>. Washington, D. C.: American Society for Engineering Education, 1970.
- Angel, Juvenal L. <u>Matching Technicians to Jobs</u>. New York, New York: World Trade Academy Press Inc., 1971.
- Bateman, John H. <u>Materials of Construction</u>. New York, New York: Pitman Publishing Corporation, 1950.
- Beakley, George C. <u>Careers in Engineering and Technology</u>. London: Macmillan Company, 1969.
- Brooking, Walter J., ed. <u>Career Opportunities Engineering Technicians</u>. Chicago: J. G. Ferguson Publishing Company, n. d.
- Davis, Harmer E. <u>Testing and Inspection of Engineering Materials</u>. 3rd ed. New York: McGraw-Hill Book Company, 1964.
- Fetter, William A. Computer Graphics in Communication. New York: McGraw-Hill Book Company, 1965.
- French, Thomas E. <u>Graphic Science and Design</u>. New York: McGraw-Hill Book Company, 1970.
- Giesecke, Frederick E. <u>Technical Drawing</u>. 5th ed. New York: Macmillan Company, 1963.
- Harris, Charles O. <u>Strength of Materials</u>. 2nd ed. Chicago: American Technical Society, 1965.
- Hoelscher, Randolph P. <u>Graphics for Engineers, Visualization</u>, <u>Communication and Design</u>. New York: John Wiley and Sons, Inc., 1968.
- Kepler, Frank Roy. <u>An Analysis of Drafting for Teachers</u>. Boston: D. C. Heath and Company, 1948.
- Mills, Adelbert P. <u>Materials of Construction</u>. 6th ed. New York: John Wiley and Sons, Inc., 1965.
- Parr, Robert E. <u>Principles of Mechanical Design</u>. New York: McGraw-Hill Book Company, 1970.

- Pippinger, John J. Industrial Hydraulics. New York: McGraw-Hill Book Company, 1962.
- Rising, J. S. Engineering Graphics. 4th ed. Dubuque: William C. Brown Company, 1970.
- Rosenthal, Daniel. Introduction to Properties of Materials. Princeton: D. VanNostrand Company, Inc., 1964.
- Thomas T. A. <u>Technical Illustration</u>. New York: McGraw-Hill Book Company, 1960.
- Wellman, B. Leighton. <u>Introduction to Graphical Analysis and</u> Design. New York: McGraw-Hill Book Company, 1966.
- Wright, Lawrence S. <u>Drafting-Technical Communication</u>. Bloomington, Illinois: McKnight and McKnight Publishing Company, 1968.
- Yankee, Herbert W. <u>Machine Drafting and Related Technology</u>. New York: McGraw-Hill Book Company, 1966.

B. PUBLICATIONS OF THE GOVERNMENT, LEARNED SOCIETIES, AND OTHER ORGANIZATIONS

- <u>Career Education in Illinois Public Community Colleges and Technical</u> <u>Institutes</u>. Illinois Board of Vocational Education and Rehabilitation, Springfield: 1972.
- Doolittle, Clifford H. <u>Trends in Engineering Technician Enrollments</u> and <u>Graduates</u>. New York: Engineering Manpower Commission of Engineers' Joint Council, 1967.
- <u>Guide For Use in Developing Training Programs in Mechanical</u> <u>Technology</u>. State College, Mississippi: Curriculum Laboratory Trade and Technical Education State Department of Vocational Education, 1966.
- Larson, Milton E. <u>Review and Synthesis of Research in Technical</u> <u>Education</u>. Columbus, Chio: Center for Research and Leadership Development in Vocational and Technical Education, 1966.
- United States Office of Education. <u>25 technical careers you can</u> <u>learn in 2 years or less</u>. Washington: United States Government Printing Office, n. d.

- C. PERIODICALS
- Dobrovolny, Jerry S. "Drafting Technology Versus Machine Design Technology." <u>Technical Education</u>, November, 1969.
- Engineering and Technology Advisory Committee of the College of Engineering, at the University of Illinois. "Machine Design Technology - A Suggested Two-Year Post-High School Program." Engineering Technology, Series No. 4, 1968.

D. UNPUBLISHED MATERIAL

Dreyer, S. F. "Engineering Graphics Courses from the Viewpoint of Mechanical Engineering Educators." Unpublished Ed.D. dissertation. University of Oklahoma, 1959.

APPENDIX A

1.74

.

Introductory Letter to the Educational Institution Follow-up Letter to the Educational Institution Information Form for the Educational Institution Dear Sir:

With the approval of my Graduate Committee, I am conducting a research study entitled "A Comparative Analysis of the Mechanical Engineering Technology Curriculum as Offered Through the Community Colleges of Illinois". The purpose of the study is to ascertain whether there is a significant difference among schools pertaining to mechanical drafting and technically related courses.

Only those community colleges in Illinois offering a two year program in mechanical engineering technology will be contacted. This means a total of forty schools only are eligible to assist in this study. It is therefore respectfully requested that either yourself or a drafting instructor complete the enclosed form. The form will take approximately fifteen minutes to complete. A few of the areas included in this study are basic and production dimensioning, geometrical construction, intersections, developments, cams, gears, technical illustration, manufacturing processes, materials and properties, strength of materials and quality control.

Information received will be handled confidentially and will not be used in an embarrassing or derogatory manner. Names, schools and locations will not be divulged. If you choose to participate in this study, a follow-up form will be mailed to you listing the results of this study.

Will you please complete the enclosed form and return it to me as soon as possible? I am quite anxious to receive your assistance with this study. Your anticipated cooperation will be greatly appreciated and respected. Thank you for your time and consideration.

Sincerely,

Richard Koppitz

Dear Sir:

A few weeks ago your office was sent a brief letter explaining a research study being conducted. As a vocational administrator your assistance would prove of value to the study. By participating in this study you may aid schools starting new mechanical engineering technology programs or those engaged in upgrading their present program.

To date I have not received an information form from your school. Assuming that the original form did not reach your desk, I am enclosing a second form for your consideration. It is very important that I receive information forms from all schools. If you have returned the previous form, please disregard this letter. Thank you for your cooperation.

Sincerelv.

Richard Koppitz

INFORMATION FORM							
NAME		Contraction of the second s					
POSITIO	N						
SCHOOL							
ADDRE	55						
	Dear Sir:						
	Thank you for your participation in this study.						
	Will you please must the enclosed form accordingly? A return envelope is enclosed for your convenience. You will, at a later date, received an abbreviated outline of the results. I am quite anxious to receive this form as soon as possible. You may omit your name and address if you desire. Thank you for your cooperation.			AN AN AND AND AND AND AND AND AND AND AN			
	INSTRUCTIONS: This form includes the areas of mechanical drafting and technically related areas. Each area is by no means complete as this would result in a rather massive form. Basics	22: PLACE A CHECK MARK IF THE ITEM IS AN INFORMATIONAL UNIT AND A SECOND MARK IF IT IS GRAPHICALLY REPRESENTED BY THE STUDENT.	Ostan	Sale of the second			
	unly success across found in your school. Omit any nems not	GEOMETRIC CONSTRUCTION Bisect a line	1 8				
	found in your school.	Divide a line into any number of equal parts Draw a curved parallel to another					
		Draw a line into any number of equal parts Draw a line through a point perpendicular to a line Draw a line through a point perpendicular to a line District an angle					
ITEMS 1-6:	WRITE IN THE APPROPRIATE ANSWER AS IT APPLIES TO YOUR SCHOOL.	Construct an angle equal to a given angle Construct a triangle with two sides and included angle given Construct a pentagon					
1.	CURRICULUM TITLE	Construct a hexagon with distance across flats given Construct an occagon with distance across flats given					
	Please state the title of your educational program as it appears in your 1971-1972 school catalog.	Construct a circle rangent to two intersecting lines Construct an arc tangent to two circles					
	CURDICUT AN DADRICIDATION NOTION PRODUCTS	Recitfy (find the true length of) an arc Construct an ellipse using the two circle method					
-	CURRICULAR PARTICIPATION BY INDUSTRY Is a local advisory type committee ever consulted as a means of curricular updating? Yes () No ()	Construct an ellipse using the two circle method Construct an ellipse with major and minor axes given Construct a parabola Construct a hyperbola					
	If yes, how often, on the average, is the committee consulted?	Construct an involute					
3.	INDUSTRIAL INTERNSHIP	Construct a belix Construct a spiral BASIC FROMERENCI GEOMETRY True length of a line					
	Can a student earn academic credit, for participation in an 11. internship program? Yes () No () If yes, how many bours?	BASIC ENGINEERING GEOMETRY True length of a line					
	quarter hours or semester hours	Point projection of a line Edgewise view of a plane True size of a plane					
4.	DRAFTING CREDIT How many courses in drafting is a student required to take?	True age of a plane Relationships of planes					
		Relationships of planes Relationships of lines and planes Relationships of lines and points					
	How much credit is awarded to the student? 12. quarter hours or semester hours	INTERSECTIONS PLANE SURFACES (prisms, pyramida) intersecting;					
6.	MATHEMATICS	Plane suffaces Single enrored nurfaces Warped surfaces					
	How many hours of mathematics are required in your program? quarter hours or semester hours	Double curved surfaces SINGLE CURVED SURFACES (cones, cylindets) intersecting:					
	Are the courses () Technical Math or () Regular Math? (check those math areas required in your program)	Single curved surfaces Dooble curved surfaces					
	() Basic math () Trigonometry () Calculus () Algebra () Analytic geometry () Slide rule	Double curved surfaces WARPED SURFACES (hyperbolic paraboloid) intersecting; Warped surfaces					
6.	PHYSICS Now many hours of physics are required in your program?	Double curved surfaces DOUBLE CURVED SURFACES (sphere) intersecting;					
	quarter hours or semester hours Are the courses () Technical Physics or () Regular Physics? 13.	Double curved surfaces DEVELOPMENTS					
	(check those physics areas required in your program) () Mechanics [forces, work, energy, momentum, etc.] () Heat (temperature, heat transfer, thermodynamics, etc.]	Oblique etiam Oblique cylinder					
	Sound [waves, propagation, acoustics, transmission, etc.] Sound [waves, propagation, acoustics, transmission, etc.] Electricity [fields, capacitance, AC and DC circuits, etc.] Magnetism [fields, inductance, magnetic materials, etc.]	Oblique pynamid Oblique zone Truncated prium Truncated cylinder					
	() Magnetism [fields, inductance, magnetic materials, etc.] () Light [nature, reflection, refraction, etc.]	Truncated cylinder Truncated pyramid					
		Truncated pyramid Truncated cone Sphere					
172112 7 0	AUGNA THE CORT BRANKET IS THE ITEM IS	Artificated cone Sphere Paraboloid of revolution Rectangular transitions Circular transitions					
11 Emp 7 - #	CHECK THE FIRST BRACKET IF THE ITEM IS ONLY REVIEWED OR THE SECOND BRACKET IF IT IS COVERED IN DEPTH.	Circular modifiems Circular and restangular transitions Triangulation					
7.	BASIC DIMENSIONING 14.	CAM DRAWING Radial type cams (plate, toe and wiper) Cylindrical type camv (grooved and end)					
	 () () aligned system of dimensioning () () unilateral system of dimensioning 	Uniform motion					
	I dimensioning with the metric system acculary view dimensioning dimensioning of tubing	Modified uniform motion Harmonic motion Accelaration and deceleration motion					
	() () dimensioning of irregular curves	Variable motion Oscillation motion					
	15. TYPES OF DIMENSIONING TOLERANCES	GEAR DRAWING Spor gear and pinion					
	() base or datum line () () chains () () () () unilateral system	Bevel gears Worm gears					
	() () polar coordinate () () bilateral system () () cabular () () limit system	Spur gear and rack Gran tech Torms [involute, sycloid] Grant's odontograph method					
	() () true position () () basic shele method () signature parts () basic shelf method 16. () angular tolerances	ASSEMBLY DRAWING Subacomblies					
	 () () interchangeable assemblies () () angular tolerances UNIQUE MACHINING OPERATIONS () () keys and keyelots 	Durline					
	() () tapers () () slots and grooves	Installation Exploded pictorial					
0,	TOOL AND DEL DRAFTING () () fundamentals [dimensioning, stock columns] 17. () have design fundamentals [speed, cost, gmality]	Peripective PIPING DRAWING Public symbols					
	 basic design fundamentals [speed, cost, quality] jig and firsture details [link, V block, slide guide] drill juge [jug types, bushings, ejectors] 	Piping symbols Single line representation Double line representation					
	 () milling fixtures [types of cuts, attachments] () turret lathe set ups [lathe types, chucking] 	Summetric representation Pipe sizes and types Pipe furings	-				
	 () curring tools [turning tools, milling current] () dues [types, punch and die clearance, lubricants] 	Pape fittings Valves					

	AN DE REAL PROPERTY OF THE PRO	2
18. CHARTS, GRAPHS AND DIAGRAMS Rectilinear chan Logarithmetic chan	BOOM STATE	24. DESIGN PROJECTS Robert E: Pall in "Principles of Mechanical Design" defines mechanical design as "the analization of many of the relation
Semilogarithmetic chart Triliorar chart Polar chart Bar graph Pie chart Flow chart Distribution chart Three-dimensional chart		mechanical design as, "the application of many of the princip of science and technology in the creation of a product and the consideration of the various factors that affect its production and use". To what extent does each student in your curri- culum engage in the design process? Note that while certain drafting courses may be termed design drafting, no actual design may take place. How many hours can a student earn working on either individual or group projects? (Fill in one quarter hours or semester hours
Concurrent coplanar vectors Concurrent coplanar vectors Noncurrent coplanar vectors String polygon Two variables with two parallel scales nonnographs Three variables with three parallel scales nonnographs Three variables with four parallel scales nonnographs Four variables with four parallel scales nonnographs Four variables with four parallel scales nonnographs 19. TECHNICAL ILLUSTRATION		 (check those design superts that are in your program) () Design considerations (function, safety, maintenance, cost, standardination) () Explanation of design process (concept formulation, analysis, refirement, testing, conferences) () Model construction (mock-ups, prostotypes) () Designer's characteristics (visualization, thoroughness, problem solving ability) () Individual projects
Prechand sketching Oblique illustration Axonometric illustration Dimetric illustration Trimetric illustration		() Group projects
Oue-point perspective Two-point perspective Line studing Smudge shading Air brush shading Photo retourbing	Randon of Carlos	26. COMPUTER GRAPHICS () input-output devices, integrated systems, plotting maching
Inking Special equipment MANUFACTURING PROCESSES Internal machine operations (drilling, turning, countersinking, countersinking, countersinking, spotfacing, horing, raming, horing, etc.) External machine operations (planning, milling, and	at a start of the	ITEMS 27 – 36: CHECK FIRST BRACKET IF AREA IS REVIEWED LIGHTLY, CHECK SECOND BRACKET IF COVERED IN DEPTH OR CHECK THIRD BRACKET IF ONE CLASS IS DEVOTED SOLELY TO THE TOPIC.
turning of slots, grooves, doveral tongues, chamfers, tapers, reliefs, necks, receases, splines, flats, etc.) Surface treatments (grinding, knurling, scraping, bulling, polishing, lapping, upperfinishing, etc.) Carting processes and tochniques		 () () () MECHANICS (Statics & Dynamics) rectors, we equilibrium, friction, centroids, impulse, run momentum, kinematics, kinetics, acceleration () () () STRENGTH OF MATERIALS force systems, barrende barrende bar
Forging processes and techniques	XX	 28. () () () () Stress and strain, deflection, shear and bends moments, torsional shear, eccentric loading 29. () () MECHANISM mechanics of machinery, grars, chains, pulleys, beits, cams, couplings, bearin and other power transmitting systems
Sheet metal developmental layouts Sheet metal developmental layouts Sheet metal developmental layouts Sheet metal seams and joints 1. NNDUSTRIAL FABRICATION Welding processes	×	 () () () HYDRAULICS AND PNEUMATICS air and fluid power transmission circuits and control (accumulators, boosters, boosters, bounder, southars, roumps) () () () HEAT TREATMENTS competature measure-
Welding processes Welding points Weldment symbols Riveting processes Riveting encoesses Riveting encoesses Riveting symbols		ment and control, cooling media, hardening, annealing, carburiting, cyaniding 32. ()()() METALLURGY standard classification system crystalline structure changes, constitutional diagrams, powder metallurgy
Brazing and soldering processes Brazing and soldering design considerations Brazing and soldering symbols Thread forms, series and classes		 () () () QUALTLY CONTROL sampling techniques, control charts, specification and tolerance rationalization () () () INSTRUMENTATION AND CONTROL theory and use of electrical instruments, power of the second se
Bolts, studs, screws, outs and washers Pins, retaining rings and keys 22. INSPECTION AND TESTING INSTRUMENTS [Rules	X	control devices, control systems 35. ()()() TECHNICAL REPORT WRITING organizatio and preparation of technical reports, technic of collection, interpreting and presenting data
Callpers Vernier micrometer Vernier caliper Vernier height gauge Gauge blocks		36. () () () () DATA PROCESSING AND COMPUTER PROGRAMMING input/output media, stored program concepts, documentation technique basic and full autocoder
Optical comparator Dal indicator Go no go gauges Strainometer Toterferometer		ITEM 37: LIST THOSE TECHNICAL ELECTIVES WHICH YOU REQUEST A STUDENT ENROLL IN. GIVE COURSE TITLE AND A BRIEF DESCRIPTION OF EACH.
Hardness testing Impact testing Endurance testing Macmetic testing		37, TECHNICAL ELECTIVES 1
Radiographic testing Electrical testing Ultrasonic testing		2

TEMS 23 - 26: CHECK EACH ITEM IF REVIEWED.

ENGINEERING MAT	ERIALS AND PROPER TERIALS	TIES						
{] metals production	() cast iron ()	alumicum						
() carbon steel	[] wrought iron []	magnesium						
() alloy seed	() copper ()	nickel						
() stainless steel	() Brass ()	tin						
() tool steel	() bronze ()	rinc						
NONMETALLIC MATERIALS								
() thermoplastics	() cubber							
() thermosetting plastles () resin-impregnated fiber PROPERTIES								
() strength () shock resistance	() metallic luster						
() plasticity (7 corrosion resistance	() toughness						
() clasticity (} electrical resistance	() energy capacity						
() ductility () elec conductivity () elongation								
() maileability { } compressive strength () fations limit								
() britzleness (modulus of elasticity	() supture strength						
() hardness () modulus of toughness	() creep limit						
() stiffness () modulus of resilience	() fussibility						