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ABSTRACT

Title of Theaisz Computer Investigation of the Variation of
Conductivity with Concentration

Larry MacPeers Shadwick, Master of Selence, 1973

Thesls directed by: David W. Ebdon, Assistant Professor of Chemistry

Computer programs were developed for the conductance equations
of R, M, Fuoss and L. Onsager as well as for the conductance
equations of T, J, Murphy and E, G, D, Cohen, These programs
were used to calculate values from selected conductance measure-
henta. The resulting values were compared with values produced
by other computer programs using the equations of Fuoss and
Onsager as well as the equations of E. Pittas. The comparisons
demonatrateg the equations of Murphy and Cohen to be the equal
of or superior to the other equations for the majority of cases,
The equations of Pitts were superior for the solutes .- HC1,
NaOH and KI.

Only the equations of Murphy and Cohen are applicable
to asymmetric electrolytes., The values computed using those
equations for various asymmetric solutes in a variety of
solventa indicated fair agreement with accepted values,
particularly with the values of the association constant,

The equations of Murphy and Cohen are an extension of and

an improvement to the equatione of Fuoss and Onsager, which

451027



have been the standard equations used to evaluate conductance
measurements, The equations of Murphy and Cohen will most

likely achieve that status in the future,
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INTRODUCTION

Conductance measurements are among the most precise
attainable in electrochemistry. Due to such precision,
they have been considered rich sources of data for analyzing
the incompletely understood chemistry of electrolytes. The
inconsistencies of conductance data with theory have usually
led, after periods of confusion, to a better understanding
of electrolyte solutions.

Conductance measurements are a direct measure of bulk
ionic transport and, if the number of charge carriers is
known, can provide an experimental value of the 1lonic
mobility. For electrolytes which do not form lon pairs
(unassociated electrolytes) the number of charge carriers
can be determined from stoichiometry. However for assoclated
electrolytes one needs a theoretical relationship whkich
describes conductance as a function of concentration so that,
with this "baseline"” as a gulde, the deviations from theory
can be interpreted in terms of an ion pair association
constant. In order for this constant to be physically
meaningful, the theoretical (or empirical) relationship
between the measurements and the phenomena must be valid
and accurate. The ultimate test of any relationship is how
well it works in evaluating accurate conductance measurements

for a varliety of electrolytes. The criteria used in the

1
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evaluation, however, usually are not entirely acceptable from
all viewpoints of present thinking 1in electrochemistry.

Glven a mathematical relationship between conductance
measurements and electrolyte phenomena, the use of computers
makes possible extenslive evaluation of these measurements
for a great variety of electrolyte-solvent combinations,

This evaluation can only be as valid as the criteria used.

It 1s the aim of this thesis to examine a few relationships
and some of the evaluation criteria by use of computers and
the most accurate conductance data. First, a brief review of

the development of conductance theory will be given.

Historical Review

Since the characteristic property of ions is their charge,
conductivity became the first method used extensively in the
study of ion association. It was conductance measurements
which led Arrhenius to postulate in 1883 his theory of
electrolytic dissoclation, which described electrolytes such
as sodium chloride as dissoclating into free ions in solution.
The mass action law was used to calculate the equilibrium
constant, and the degree of dissociation,Y , was calculated
from the ratio of the equivalent conductance at a given
concentration to the limliting equivalent conductance at
infinite dilution: 7Y = /\//\o . The dissociation constant Ky
was then given by

Nec
AN, =N)

Kd=
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The Arrhenius equation predicted that at very low concentrations
the equivalent conductance should be linear with concentration,
The very precise data of Kohlrausch, however, showed that the
variation of equivalent conductance with concentration for

salts such as sodium chloride approached a square root dependence
at low concentrations, Ostwald, on the other hand, using the

Arrhenius hypothesis, stated the Ostwald dilution law

and demonstrated that conductance data for many systems, such
as acetic acid in water, conformed to the predictions of the
hypothesis,

The confusion was due to a lack of understanding of the
fundamental structure of electrolytes. More than a generation
elapsed before sufficient evidence was avallable to resolve
the dilemma. Early in the twentieth century, x-ray studies
showed that there are no neutral molecules of sodium chloride,
only sodium and chloride ions arranged in a periodic crystalline
lattice. Acetic aclid, on the other hand, exists in the pure
form as neutral molecules; it could dissociate into lons
as described by the Arrhenius theory. Salts of inorganic acids,
such as sodium chloride, could not possibly dissociate since
they are inherently ionic specles. What, then, leads to the
decrease in equivalent conductance of these salts with

concentration?



4
The equivalent conductance/\ for a completely dissociated

electrolyte may be written in the form
/\: ?Zui

where ?f is the faraday and u; is the mobility of the 1th ion,
It 1s evident that a decrease in f\is equivalent to a decrease
in ionic mobility. (The mobility is defined as the velocity
of an ilon in an electric potential gradient of one volt per
centimeter.) Since it is the charge on the ions which makes
electrolytes different from non-ionic solutes, one might
expect that such deviations of electrolyte solutions from
1deal behavior were due to the coulombic forces between the
ions. This fact was definitely established on sound
theoretical grounds by Milner,' who was able to calculate the
thermodynamic properties of electrolytic solutions from theory.
His treatment, however, was exceedingly involved and did not
yield an entirely satisfactory result.2
In 1923 Debye and Hickel,> instead of trying to obtain
the electrostatic potential energy as a sum of all palrs of
ione as Milner had done, considered each ion a discrete site
of charge and all ions about the reference ion as a contlnuous
space charge or "ion atmosphere." This concept and the use
of Poisson's equation effected a mathematical short cut which
leads to relations from which the limiting behaviors of
dilute solutions of electrolytes may be quantitatively predicted.
They took as their model a completely dissociated electrolyte,



the lons of which were rigid, unpoiarizable spheres,
Interactions between ions were computed by Coulomb's law with
the medium assumed uniform hydrodynamically and electrostatically.
Thus the viscosity and dielectric constant‘of the pure solvent
were taken as those of the medium. Further, they restricted
themselves to very dilute solutions where these approximations
were not too drastic,

The first result of the Debye-Huckel theory was to
predict that the logarithms of the activity coefficlents for
dilute solutions of completely diasoéiatod electrolytes should
be linear with the square root of the ionic strength, in
exact agreement with experiment. Debye and Hiickel then
obtained a first approximation to.the solution of the conductance

problem. In their t.reat:.mem;.l‘L

however, they neglected the
thermal motion of the reference ion and made some rather
dangerous hydrodynamic approximations., In 1926 Onsager5
introduced the neceassary refinements and published the famous

Onsager limiting law of equivalent conductance
N = A - (LA, +8)ct,

where oL and 8 are theoretically derivable coefficients for

the time of relaxatlion effect and the electrophoretic effect,
respectively. The Oneager equation correctly predicted the
limiting slope of a plot of equivalent conductance versus

the square root of the concentration for completely dissociated

electrolytes, Two years later Debye and Falkenhagen6
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extended the Onsager theory to alternating-current conductance,

The main achievement of the Debye-Hiickel-Onsager theory
vas that it showed how to calculate the effects of long-range
electrostatic interactions in dilute electrolyte solutions.

It demonstrated that many salts in water are complétely
dissociated., Apparent deviations from the theory would find

& physical explanation, it was thought, end would not require
& return to the idea of un-ionized salt molecules.’ But

such deviations were not uncommon and at least one possible
cause was appreeciated, In the mathematical simpllfications

of the theory it had to be assumed that the electrostatic
interaction energy of an ion is small compared with its kinetic
energy. This assumption will not be valid for small ions of
high charge in media of low dielectric constant,

This complication, the problem of short-range forces, has
not been satisfactorily solved even to this day. The first
attempt at a solution, however, was made by N. Bjerrum.8
Using the same model as Debye and Huckel, Bjerrum plotted for
dilute solutions the probability of finding an oppositely
charged ion at a given distance from a central ion. The
distribution curve shows & flat minimum distance where the
work of separating the two oppositely charged lons 1s four
times as great as the mean kinetic energy per degree of freedom.
Blerrum regarded a pair of 1lons within this distance as
associated to form an "ion pailr." It is evident that the

Bjerrum ion pair is a mathematical fiction and that there 1is



an arbitrary element in its definition. It does, however,
offer a mathematically simple answer to the complication of
short-range effects,

In 1932 Onsager and Fuoss? presented & treatise on
conductance, diffusion and viscosity, where the limlting laws,
valid for electrolytes containing two species of ions, were
extended to electrolytes of arbitrary compositions. Their
calculations of the electrophoretic term in conductance theory
contained a "distance-of-closest-approach" parameter a and
represented the first attempt to extend the range of the theory
by taking i1nto account the finite slze of the ions., The
next appropriate step seemed to be the 1ncorporation of the
lonic dlameter into the relaxation term. This was first done
by Kaneko'© and later by Falkenhagen, Leist and Kelbgl‘,

A more complex presentation, incorporating an ion size
and resulting in transcendental terms, was given by Pitts
in 1953!2 In his presentation he claimed to have used the
complicaied potential function of Gronwall, La Mer and
SandvedlB\.“He actually used the Debye-Hﬁbkel solution of the
Poisson-Boltzman equationIA, He also assumed that all
perturbation effects on a given ion vanish at the distance
of closest ilonic approach and at all greater dlstances.

- The Pitts equation, although never popular, has been
demonstrated by Stokes and his coworkers to be superior to
the highly accepted Fuosg~0nsager equation for precise

conductance measurements of hydrochloric acid and sodium



hydroxide.15

Fuoss and Onsager16 published their well-known conductance
equation for symmetrical electrolytes in 1957. Their treatment,
like that of Pitts, was quite complei in the basic results,
Using sultable mathematical approximations, however, they were
able to put their results in a more usable form for the analysis
of data. Their resulting equation as latser modified by

Fuoss and Accascln&17 is
N = A - sct +Ec log ¢ + Jo

The first two terms are those of the Onsager equation, where

S = 01/\; + ,8 . The remaining two represent higher order terms,
mainly in the relaxation field, All three coefficients, S, E,
and J, depend on the absolute temperature, the dielectric
constant and viscosity of the solvent, the charge type of the
electrolyte, and fundamental constants. In addition, J

depends upon the ion-size parameter a.

The success of the Fuoss-Onsager equation in the analysis
of a large amount of data for uni-univalent electrolytes18
demonstrated its essential correctness ag far as the form of
the equation, in particular the exiatence of the log tern,

19,20

was concerned, In 1961-63 Atkinson and coworkers were

able to show that the theory was capable of fitting conductance
data for electrolytes of higher charge type.
Prior to the appearance of the Fuoss-~Onsager equation,

21

researchers had used empirical extensions of the Onsager



equation to analyze conductance data for unassociated
symmetrical electrolytes. For those systems which deviated
noticeably from these empirical-theoretical equations,
association constants were employed to improve the fit. 1In
cases where these constants were not large, they were regarded
as little more than adjustable parameters, Now with a theory
which seemed to describe preclsely the behavior of unassociated
electrolytes at low concentrations, many workers showed
renewed interest in the determination of lon-association
constants from conductance measurements.7’22 Those systems
showing moderate assoclation were re-examined and the
association constante derived therefrom were believed to
correspond rather closely to physical reality.

The Fuoss-Onsager equation modified for ion assoclation

takes the form
AN = N - scp + ECy) Llog (Cv) + J(Cv) - K, £ 2 (o) N\

and 1s able to describe observed values of conductance ;t

low concentrations for a variety of systems in media of
dielectric constant sometimes &s low as 12.23 Problems arise,
however, in the interpretation of the constants. The equation
involves three arbitrary constants, ﬁg, J, and KA’ from each
of which one can calculate & distance of closest approach or
ion diameter a. For an electrolyte which conforms to the

behavior theoretically predicted for the model of charged
spheres, one might expect the equality
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to hold. This result is not always obtained.24'25

In a series of papers with Onsager, Fuoss derived a new
equation which depended on two arbitrary parameters, /g,and
L(a) which purportedly described the conductance behavior of
assoclated electrolytes without the need of an arbitrary
association constant. The eguation has not been demonstrated
successfully.

In 1970 Murphy and Cohen published their improvements
and corrections to the Fuoss-~Onsager equations.26 In their
derivatione they used a different method to solve the differential
equation for the nonequilibrium pair distribution funetion,
as well as including a neglected contribution to the conductivity
that affects the value of E and J. Moreover, they used a
higher order expression for the nonequilibrium pair distribution
function 80 as to extend the applicability of the theory to

asymmetric solutes such as CaCly.



STATEMENT OF PROBLEM

The Murphy-Cohen equation is the result of corrections
to and extensions of the Fuoss-Onsager theory of electrolytes,
This resulting equation 18 the first such conductﬁnce equation
which can be applied to unsymmetric solutes, If the Murphy-
Cohen equation accurately describes the conductance relationship
for dilute, unassociated, unsymmetric solutes, then accurate
assoclation constants can be derived from conductance
measurements for associated, unsymmetric soclutes.

This thesis will investigate the accuracy of the Murphy-
Cohen equation for a varlety of solvent-solute combinations,

The first part of the investigation will compare results
of the Pitts equation and the Fuoss-Onsager equation obtained
by Fernandez-Prini and Prue against results of the Fuoss-
Onsager equation and Murphy-Cohen equation obtained by the
author for ldentical data. These data are for unassociated,
symmetric solutes in & variety of solvents,

The second part of the investigation will compare
association constants obtained by the author using the Murphy-
Cohen equation in the associated electrolyte form against
assoclation constants obtained by methods other than

conductance,

1"
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COMPARISON OF CONDUCTANCE EQUATIONS

The Murphy-Cohen equation is the first conductance
equation which can be applied to asymmetrical solutes. It
uses the same model as the Fuoss-Onsager equation-~a hard-core
ion of a non-zero radius moving through an incompressible
fluid characterized only by & dielectric constant and a
viscosity. This equation also uses some of the derivations
&8 used for the Fuoss-Onsager equation and results in the
same general form as the Fuoss-Onsager equation.

The Murphy~Cohen equation differs mainly from the Fuoss-
Onsager equation due to three general changes being incorporated
into the derivations. The first change is the use of a
different method to solve the differential equation for the
nonequilibrium ion pair distribution function of the ions,
which made it possible to derive an expression for the

conductivity:

N = A A,c* N /\2,cv1nc + /\2c

o

with a more nearly accurate expression for /\2.27,28 The
second change is the use of a higher order expression for

the extended equilibrium pair distribution function so as to

27

extend the theory to asymmetric solutes. The last change

involves the inclusion of a contribution to the conductivity

that affects the value of both ﬁ%, and Chen pointed

A.
2
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out?9 the neglected term which was the velocity field
contribution to the relaxation field. Inclusion of this term,
-E» , into the expression for the tranascendental term, E, in
the Fuoss-Onsager conductance equation gives the transcendental

term for the Murphy-Cohen equation
E = E1 /\0 - 2E2 .

This additional term is considerably smaller than E and the
function C 1n C approximates & linear function over short ranges
of concentration, thereby allowing the JC term of the Fuoss-
Onsager equation to absorb such differences as caused by the
missing -E, term when the Fuoss-Onsager equation i1s used on
actual data,’0»3!' It is interesting to note that the

transcendental term for the Pitts equation
E = EIN - E

is the same as for the Fuoss-Onsager equation, The simllarity
" 18 due to Pitts' neglect of the velocity field contribution,
which Fuoss-Onsager included. Pitts, however, included

the electrophoretic effect contribution, which Fuoss-Onsager
neglected.



DEVELOPMENT OF COMPUTER PROGRAMS

The evaluation of the Murphy-Cohen equation was started
by first writing programs for the Fuoss-Onsager equation., The
Fuoss-Onsager equation has been most successfully and widely-
used equation for numerous combinations of symmetric solutes
and solvents, The Fuoss-Onsager equation also has the same
general form as the Murphy-Cohen equation. Therefore, the
Fuoss-Onsager equation 1s an ldeal starting point in the
development of progrémming techniques, test data, and experience
in evaluating conductance data., The Fuoss-Onsager equation
also offers much simpler relationshipe for determining
various parameters and constants from conductance data.

| The FORTRAN 1V programming language was used on an
IBM 360 model S0 computer for most of the computer programming.
The basic method used was that outlined by Kay for the

Fuoss-Onsager equation.32

Kay used differential equations to
gulde the program in approaching the solution values, This
technique proved far superior to overrun methods of hunting
for a solution,

The programs used for the Murphy-Cohen equations are
given in Appendix 1--for the unassocliated eléctrolyte--and
in Appendix 2-«for the as#ociated electrolyte, The programs

have the following arrangement of instruction blocks:

14



15

read input data.

determine initial values

print input data aﬁd initial values

perform least—squares fit

determine distance of closest approach and related terms
perform final calculations

print output

go back to the first instruction block

The least-squares fit used in the author's programs does not
weight the data as no definite advantage would be gained for

evaluation of the results.



COMPARISON OF PROGRAM RESULTS

One particular problem in obtaining conductance data
from literature is the tendency of many authors to give
conductance data extrapolated to some "even" value of concene
tration or to give data that has been "rounded" to better fit
some graph or empirical equation. Fernandez-Prini and Prue
in their paper noted that usually the original unpublished
data that they sought for their comparisons had been lost..M
That paper by Fernandez-Prini and Prue is a well-documented
source of conductance data and resulte for the Fuoss-Onsager
equation and particularly the Pitts equation., Table II lists
their results from that paper. Table I 1lists this author's
results with the same data using his computer programs for
the Fuoss-Onaéger equation and the Murphy-Cohen equation.

The differences between Teble I and Table II are partly

due to the use of the general equation form

N = A - 5 24+ EC logC + e - J2c3/2

by Fernandez-Prini and Prue. The =~ J203/2 term 18 not due to
retention of higher order terms in the differential equation,
but rather the results of approximations to functions in the
complete equations. This - J203/2 term is less of an extension
to the Fuoss-Onsager equation and the Pitts equation and more

of an empirical addition. It weakens the basic theories

16
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while adding to the variability of term values when doing a
least~squares fit. Another cause of the differences would be
the weighting of the conductance data by the concentration in
the treatment by Fernandez-Prini and Prue, Welghting usually
creates more questions than answers., For example, would a
different weighting factor be better? Another consideration
is that many of the solutes Fernandez-Prini and Prue used had
already been reported as fitting the Pitts equation better
than the Fuoss-Onsager,

Of particular interest in comparing Table I and Table II
18 the standard deviation of the fit, U , and the distance
of closest ionic approach, 8. These show that the author's
program for the Fuoss-Onsager equation, which does not have
veighted data nor the - J2C term, has as good or better fit
than the program by Fernandez~Prini and Prue for the Fuosse
Onsager equation, gnd that the author's program gives comparable
values for the distance of closest lonic approach. The Pitts
equation gives the best overall fit for the data used, with
the Murphy-Cohen equation giving the second best., However,
if one excepts the solutes of HCl, NaOH, and KI, the Murphy-
Cohen equation gives a better fit in every case but one,
Comparison of the distance of closest approach values shows
that the Murphy-Cohen equation and Pitts equation give similar
valuee in water and ethanol, but give dissimilar values in DMF.

Teble 111 gives the standard deviation of the least-squares

fit, the distance of closest lonic approach, the lon association
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constant, the standard deviation of the ion association constant,
and, when available, the ion association constant from a
reference source. In most cases thls reference value was
determined by methods other than those using conductance data,
The standard deviation of the least-squares fit, O , shows
fairly good correlation with the exceptions of LaNTS in water
at 25°C, and Ca012 in methanol at 10°C. These exceptions could
be due to bad data or could possibly indicate solute, solvent
combinations in need of research. The distance of closest
approach, a, shows a much larger range of values than one could
expect from ilonic radii in crystal structures., However, given
a tightly held layer of solvent and/or the added bulk of an
assoclated ion, one might expect the distance of closest
approach to increase, The associatlon constant, KA, is
susceptable to loss of meaning due to inaccurate data or data
of limited accuraecy. Therefore, association constants above

50 are usually considered to indicate association. The standard
deviation of the assoclation constant can help in evaluating
the reasonableness of the association constant. Negative
assoclation constants usually indicate no assoclation, bad
data, or both. The higher agddeidtion cdnstant veTues ‘seem to
correlate well with the association values produced from
activity coefficient data used in computer modeling of

seawater equilibrla.33 The results for MgCl_ in water at 10°C

2
indicate an ion association, The heavier alkaline earth

chlorides are generally thought to be unassociated.
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TABLE I CALCULATIONS BY AUTHOR FOR UNASSOCIATED SYMMETRIC
ELEC TROLYTES
FUOSS-ONSAGER

SOLVENT ELECTROLYTE N 10% ¢ A, J 8 o
H.0 HC1 (15a) 10 3150 426,67 526.7 3.49 0.125
2 HOl 23#; 11 2-150 426,41 546.8 3.62 0.179
HC1 x5 6 20-150 426,87 504.6 3.35 0,105
NaOH (156) 13 10-160 249.47 298.7 3.16 0.080
KC1 (36) 7 5-100 149,94 208,0 3.27 0.029
KC1 (37; 6 5-130 149,97 197.4 3,11 0,013
K1 (37) M 10-160 150.53 222,2 3,48 0,043
DMF KI (38) 11 4,40 83.11 1067.5 4.85 0,095
csclo, (38) 14  1-50  86.96 1000.7 4.24 0.039
CH_OH KC1 (39) 25 0,7=-50 104,92 1352.,8 3.25 0.045
3 NaCl  (39) 23 0.,4-40  97.26 1430.3 3.81 0,042

MURPHY-COHEN

SOLVENT ELECTROLYTE N 10% C A J a o
H O HC1 é!Sa) 10 3.150 426,63 490.2 3.39 0.108
2 HC1 34; 11 2-150 426,38 509.7 3.52 0.162
HC1 (35 6 20-150 426.81 470.3 3,25 0.098
NaOH (15¢) 13  10-160 249.41 264.1 2,98 0.068
KCl (36) 7 5100 149,91 168.4 3,06 0.018
XC1 (37; 6 5-130 149,94 159.9 2.9% 0.013
KI (37) 11 10160 150,48 187.2 3.35 0.030
DMF KI (38) 11 440 83,03 830.4 2.98 0,080
csClo, (38) 14 1-50 86.91 757.9 2.49 0.020
CH;0H  KC1 239) 25 0.7-50 104.84 900.6 2.94% 0.079
NaCl 39) 23 0.4-40 97.19 970.7 3.37 0,046
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TABLE II CALCULATIONS BY FERNANDEZ-PRINI AND PRUE‘&>FOR

UNASSOCIATED SYMMETRIC ELECTROLYTES USING
THE SAME DATA AS TABLE I

FUOSS-ONSAGER
SOLVENT ELECTROLYTE A, I Jo a8 o
Hy0 HC1  {(15a) 426,83 521.4 98,2 3,46 0,148

HCl  (34) 426.92 532,9 106.8 3.54 0.238

Hcl  (35) 426,90 510.6 90.4 3,40 0,087
NaOH (15¢) 249.53  300.2 66.8 3,18 0.082
KCl (36; 149,93  210.9 75,8 3.32 0,028
KCl §37 149,97 205.0 69.8 3.23 0,008
KI 37) 150.55 230.5 96.7 3.61 0.038
DMF KI (38; 83,18 1059. 313,2 4,80 0.097
CsCl10, (38 87.01 993,6 153.3 4,21 0,047
CHs0H  kC1  (39) 104,90 1353.  .98.8 3.25 0.046
Nacl (39) 97.29 1424, 75.3 3.79 0.046
PITTS
SOLVENT ELECTROLYTE A\, Iy Jn a o
H50 HCl  (15a) 426,44  683.7 1257. 3.88 0.016
HCl (34 426,54 701.3 1321, 4,03 0,070
HC1 (35 426,50 670.3 1209. 3.77 0,068
NaOH (15¢) 249,32 380,6 614,9 3,26 0,034
kel (36) 149,87 245,6 375.5 3.10 0.009
kc1  (37) 149,88 244,8 373,0 3,09 0.031
K1 (37) 150.38 294.4 538.0 3,99 0.016
DMF KI (38) 83.00 1319, 3784, 4.54 0.056
CsC10,(38)  86.87 1197, 2848. 3.52 0.024
CHOH KC1 (39; 104,76 1573, 2858. 2.16 0.107
NaCl (39 97.15 1679, 3595, 2.78 0,065
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TABLE III - CALCULATION RESULTS FOR ASSOCIATED ELECTROLYTES
USING MURPHY~-COHEN EQUATION COMPARED WITH
ASSOCIATION CONSTANT VALUES FROM REFERENCES

REFPERENCE
SOLVENT" ELECTROLYTE"™ o & X, X, ‘KA:f*
H,0 Na,S0, (40) 0.022 7.70 1.1 3.5 5.0 (7)
Ho0 Na,SO, (40) 0.018 8.Mm 12,9 1.5 5.0 (7)
H,0 MgBDS (41) 0.090 3.22 34,2 3.1

H,0 KCl (17) 0.015 5,37 1.2 0.3 NONE (7)
H,0 K,80, (40) 0.040 8.82 14,8 1.4 10.0 (7)
H,0 (ao)xsre(cx)6 0.061 3.95 27.9 2.8 20.0 (7)
H,0 K,BDS  (40) 0.043 11,27 17.6 2,2

H,0 caCl, (40) 0,100 5.92 -2.7 3.1 NORE (7)
H,0 Cacl, (40) 0,077 7.27 1.9 1.8 NONE (7)
H20 CaCl, (40) 0.019 6.99 1.0 0.6 NONE (7)
K,0 CaBDS  (41) 0,031 6.42 1043 9.6

H,0 caBDS (41) 0,019 6.07  98.8 6.8

H,0 CaBDS (41) 0.038 3.06 36.5 2.9

H,0 MnCl, (40) 0.049 8.43 6.9 2.1 1.0 (7)
H,0 Mnso,  (40) 0.022 2.73 223.8 2.6 190.5 (7)
H 0 Mnso, (40) 0.147 2.72 210.0 4.7 190.5 (7)
H,0 MnBDS  (19) 0.128 7.50 44,1 0.2

H,0 CuBDs (19) 0.428 6.3 67.9 19.6

H,0 srcl, (40) 0,023 T7.27 2.9 0.5 NONE (7)
H,0 SrBDS  (41) 0,087 7.81 57.2 6.6

N



TABLE III (continued)

SOLVENT" ELECTROLYTE™*

H20

HEG
H20
H, O

N

HO

n

H O

LY

H. O

L]

H,0

)5

H O
N

N

¢]

N

H,0

n

H O
H_O

[ I

DO

V)

D,0

n

D,0

)

D O
D0
D,0
D_O
DO

2
MeOH

NN

N

MeOH

SrBDS  (41)
BaCl, (40)
BaBDS  (41)
BaBDS (41)
LaNTS  (19)
10°%¢ MgCl,  (40)
10°¢ K,80,  (40)
109¢ K, BDS (40)
10°¢ cacl,  (40)
10°C MnCl,  (40)
10°¢ Mns0,  (40)
10% srcl,  (40)
10%¢ BaCl, (40)
KESOA (40)
(40)K,Fo (CN)
K,BDS  (40)
ca612 (40)
nCl, (40)
MnS0,  (40)
srcl,  (40)
Baclz (40)
Mgll, (40)
K,BDs (40)

o

0,052
0.045
0,049
0,039
1.043
0.076
0.128
0.062
0.059
0.038
0.103
0.017
0.039
0.083
0,043
0.066
0.052
0.096
0.139
0.054
0.056
0.150
0.062

I

5.53
7.93
6.23
4.76

18.20

13.84
1.82
10.48
7.87
T.11
2.69
6.37
TT7
9.06
3.98
11.08
T7.39
2.80
2,74
7.97
6.88
4,18
4,17

39.6
6.3
102.4
47,2
2894 .7
23.9
22.8
14.6
4.9
2.3
174.7
1.6
5.4
16.2
27.4
17.2
3.4
-16.0
212.3
5.6

278.6
460,8

0.7
1.2
2.5
1.3

22

3.0

1.4

3.9
6.7

2.1
14,5

12.7

9%



TABLE III (continued)

SOLVENT* ELECTROLYTE™¥

MeOH CaC12
MeOH Sr012
MeOH Ba012

MeOHlO“Q.Rsele

MeOH10°C Cacl2

MeOH10°C srel,

4

(40)
(40)
(40)
(40)
(40)
(40)

o

0.101
0.148
0.089
o.t21
0.235
0.142

a

4,40
4,17
4,23
4,68
4,51
4,57

Ky

374.0
-7806

357.1

152.3
43,1

180,3

BDS represents m-benzenedisulfonate.

NTS represents

L2 L

Ky
13.6

108.8

30.0
17.0
83.5
19.2

7,%,5-naphthalenetrisulfonate

23

All solutions sare at 25°C unless otherwise noted.
0 represents deuterium oxide,
M§OH represents methanol

#H"

NONE indieates no evidence of ion~palrs has been found.



SUMMARY

The Murphy-Cohen equation is an extension of and an
improvement over the Fuoes-~-Onsager equation, The Pittis
equation 18 superior for only a few symmetric solutes., The
Murphy-Cohen eguation gives fairly good results for associated
solutes, but the possibilities have only been touched. Of
particular importence is that the Murphy-Cohen equation has
the same general form as the Fuoss.Onsager equation, therefore,
even if the Murphy-Cohen equation supplante the Fuoss-Onsager,
those publications of the.ptet which used the Fuoss-Onsager
equations to determine the validity of their data would still
be pertinent to the Murphy-Cohen equation,

It should be noted that the models used in the equations
discussed in this theslis limit the theories therein derived
to low concentrations and moderately high dielectric constants
where the long-range forces are dominant and calculable,
Further work to specify more realistic models plus the creative
energy to transform these improved models into applicable
equations is needed for the future growth of conductance

measuremnents as a sclence,

24
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APPENDIX 1

COMPUTER PROGRAM USING THE MURPHY-COHEN EQUATION

FOR UNASSOCIATED ELECTROLYTES

PROGRAM FBUR _
UNASSBCIATED ELECTROLYTES BF ANY CHARGE TYPE USING THE MURPHY
AND COHEN EGUATION

= A LEAST»SQUARES FIT OF CONDUCTANCE DATA FOR

THE GENERAL MURPHY=COHEN EQUATION IS:

LAMBDA(1)=LAMZRO=S*SART(C(I)I+EP*C(I)*ALABG(C(I))+JMC*C(I)

WHERE

SIMILARLY THE

1

IS A POSITIVE INTEGER DEFINING A DATA TABLE POSITION

“PLBTTING RELATIONSHIPS® ARE}

LMSTAR(I )= (LAMBDA(I)=LAMZRB+S*xSQRT(C(I)))/(C(I))
LMSTAR(I )=EP*ALOG(C(I])I+JIMC

LNPRIM!I)=LAHBDA(I)+S&SORT(C(I))-EPuC(I)¥ALGG(C(f))
LMPRIM(I)=LAMZRO+JIMC*C(])

THE FOLLOWING

N

AN
AM(I)
D
ETA

T

21

22
LAMZR1

" LAMZR2

LAMZRO
AZR

cn)
LAMBDA(I)
ALPHA
BETA

EP

EPL

EP2

S

JMC
LHPRIM(I)
Y .

B
SIGMC1
SIGMC2
SUMDIF
PHI
STDLM

A1l THRU A23

All
LMPRIM(I)
LMSTAR(I)
LMCALC(TI)
STDKA
STDKA
STDAZR
STOLZO
DELTLM(I)

NAMES ARE USED IN THE PRBGRAM]

NUMBER OF DATA PBINTS IN A DATA GROUP

FLYUATING PBINT VALUE BF N

ALPHAMERIC WEBRD CONTAINING TITLE CARD DESCRIPTIGBN
DIELECTRIC CONSTANT

SOLVENT VISCUSITY

ABSULUTE TEMPERATURE

UNSIGNED CHARGE NUMBER 6N THE P@SITIVE ION
UNSIGNED CHARGE NUMBER 6N THE NEGATIVE ION

JONIC EQUJVALENT CONDUCTANCE AT INF DIL 6F PBS IBN
IONIC EQUIVALENT CONDUCTANCE AT INF DIL BF NEG IBN
EQUIVALENT CONDUCTANCE 6F SBLUTIBN AT INF DIL
DISTANCE OF CLOBSEST APPROACH OF Tw8 IONS

MBLAR CONCENTRATIBN

EQUIVALENT CONDUCTANCE

RELAXATIBN FIELD COEFFICIENT 6F BNSAGER EQUATI®N
ELECTROPHORETIC COEFFICIENT OF BNSAGER EQUATIGN
COLFFICIENT BF THE TRANSCENDENTAL TERM
COEFFICIENT OF THE TRANSCENDENTAL TERM
COEFFICIENT OF THE TRANSCENDENTAL TERM

LIMITING COEFFICIENT IN ONSAGER EQUATIBN
COEFFICIENT OF THE LINEAR TERM

"MBDIFIED" EQWUIVALENT CONDUCTANCE

BJERRUM PARAMETER

CBEFFICIENT OF LINEAR TERM
COEFFICIENT O9F LINEAR TERM

SULHIMATION OF THE SQUARES 8F DELYLM(I)

STANDARD DEVIATION OF LAMBDA(I) VERSUS LMCALC‘I)~

DETERMINANT VALUES FBR A LEAST SQUARES FIT
FLOATING PUJINT VALUE OF N

25
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KAPPA(I) o=
KAPAA(I) ==
KAPAAB(]) ==

REAL LAMBDA(30),LMPRIM(30)sLMCALC(30)2KAPAA(30),KAPAABI(3
10),LBGC(30)sKAPPA(30)sLMSTAR(30)
DIMENSION C(30),DELTLM(30)sAM(20)
REAL LAMZRO,LAMZR1,LAMZR2,KA»JUMCINULINU2IKAPSLLYsLLIILL2)L2»JIMCALC
DATA DECK SHBULD CUNTAIN A TITLE CARDs A SOLVENT CARDs» A SOLUTE
CARD» CONCENTRATION DATA CARD(S)s AND A CONDUCTANCE DATA
CARD(S) FER EACH DATA GROUP. A-BLANK CARD INDICATES NO©
FURTHER DATA GROUPS4
TITLE CARD CUNTAINS N AND TITLE 6F DATA GROUP
10 READ(5,100)Ns (AM(I),1=3,19)
100 FORMAT(12,19A4)
WRITE(6,900)
900 FORMAT(1H1s'PROGRAM 4 we A LEAST=SQUARES FIT 6F CONDUCTANCE DATA
1FBR UNASSBCIATED ELECTROLYTES 6F ANY CHARGE TYPE's»/»20Xs 'USING THE
2 MURPHY AND CUHEN EQUATIONe',/,20Xs'LARRY Ms SHADWICK BOX 112 C
3HEM DEPT GRAD RESEARCH') - . .
AN=N : ) :
CHECK FBR BLANK CARD
IF(N)1000,10004105
SOLVENT CARD CONTAINS Ds ETAs AND T
105 READ(5,110)DJETAST
110 FORMAT(FEe2sF6169F602)
SOLUTE CARD CONTAINS Z1, Z2, LAMZR1, LAMZR2s, LAMZROXEST¥, AZR¥EST*
READ(5,115)21,Z22LAMZR1, LAMZR2sLAMZROs AZR
115 FORMAT(2F14043F693,F4e2) .
CONCENTRATION DATA CARD(S) CONTAIN C(I)
READ(5,120)(C(I)sI=1,N)
120 FORMAT(12F644)
CONCENTRATION DATA CHANGED TO MOLE /LITER VALUES
DB 125 I=1,N
125 C(I)aC(llx1¢E=4
CONDUCTANCE DATA CARD(S) CONTAINS LAMBDA(I)
READ(5,130) (LAMBUA(I)sI=1sN)
130 FORMAT(12F6¢3)
INPUT 6F DATA COMPLETE; NOW PRINT INITIAL BUTPUT
WRITE(6,905) (AM(I),1=1,19)
905 FORMAT(1HO219A4,/)
WRITE(65910)DsJETAT
9100FBRMAT (! SOLVENT DATA!'7X'wm18XID =!5XsF7¢3,8X1ETA ='6XsFQe6s7X'T =
1'5X,F642)
WRITE(6,915)21s22sLAMZRY,LAMZR2
915 FORMAT (' SBLUTE DATA'8X'=w!7X1Z1 ='7XsF2e0s12X1Z2 ='7XsF2¢0s8X0s
1'LAMZRY ='5X,F7¢355X 'LAMZR2 ='SXsF7¢3)
IF(AZREQeQe0Q) AZR=34¢0
WRITE(6,920)LAMZRO, AZR
920 FORMAT(!' INITIAL ESTIMATES ==!3X'LAMZRO =15X,F7+3s8X'AZR =16X,
1F5e2)
AZR CHANGED T8 CENTIMETERS
AZR=AZR¥1.E=8
WRITE(6,925)N
925 FBRMAT (' MISCELLANEOUS'6X! == 18XIN =16X,12)
PRINTING OF INITIAL DATA COMPLETEDJ CALCULATE BASIC CONSTANTS
200 IF(21=22) 205,210,205
205 NU1=2Z2 ‘



210

215
220

225
230

235

300
305

310
315

320

330

350
c
c

400

C
ccccce
C THE

aocoOoo0n
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NU2=Z1

GO TO 215

NU1=1.0

NU2=1.0

IF(LAMZR2) 225,220,225

LMZRSW=1

G8 7O 235

IF(LAMZR1) 2354230,235

LMZRSHW=2

G& TO 235
SQRTW=SQRT(0+5%(NU1xZ1¥Z1+NU2*Z2%22))
PHI=16+47098E=4%Z1%22/(D%T)
KAP=0e¢502915E10%5SURTW/SURT(D*T)
All=N

DO 350 L=1,20
IF(LMZRSwW=1) 310,305,310
LAMZR2=LAMZRU=LAMZR]
GO 76 320
IF(LMZRSW=2) 320,315,320
LAMZR1=L AMZRU=| AMZR2
GB T8 320
Q=SQRT((Z1%22) »(LAMZRI+LAMZR2) /((Z21+Z2)% (Z2%LAMZR1+LAMZR2%21))
1)
ALPHA=2+8012E6%Z1%22%SORTW*Q*¥Q/((1¢0+Q)%((D¥T)*%1e5))
BETA=41e243%(Z21+22)%SQRTW/ (ETA*(SQRT(D*T)))
S=ALPHAXLAMZREC+BETA ’
EP1=((QxKAP¥PHI)*x2) /1240
EP2= (KAP*PHI*BETA) /1640
EP=EPI ¥LAMZRO=440%xER2# (O¥Q+((Z1=22)%%2)/(21%22))
TMPLMB=LAMZRD
RESET DETERMINANT VALUES T8 ZEROs, PRIBR 7O LEAST=SQUARES APPLe
A12=040
A13=0.0
A22=0.0
A23=040
DB 330 I=31,N
LMPRIM(1)=_AMBDA(I)+S*SQRT(C(I))=EP*C(])*ALBGI(C(I))
Al2=a12+C (1)
Al13=A13+LMPRIM(T)
A22=A22+C(1)¥C(1I)
A23%A23+C (1 )xLMPRIM(I)
DETD=A11xA22=A12%A12
LAMZRO=(A13+A22=A125423)/DETD
JMC= (A11%A23=A12%A13)/DETD
IF(ABS(LAMZRU~TMPLMO )=0¢001) 400,350,350
CONTINUE
CALCULATION OF ION SIZEs AZRs, BY M=C EQUATION USING DIFFERENTIAL
APPROXIMATION
DO 480 I1I=1,50,1
DD = 1o + 4o/2vxx]]
B=PHI/AZR

cceceececceecccceecectccecceccececcecceccecececcecececececcecceececceccececceccecceccecccccce
CALCULATIONS THAT FOLLOW DETERMINEs» BY THE MeC EQUATION, WHAT THE

VALUE ©F JMC, JUMCALC IS THE NAME USEDs» WOULD BE FBR A GIVEN VALUE
OF AZR; AS WELL AS THE DIFFERENTIAL OF JUMCALC WITH RESPECT TO THE
GIVEN AZR, DJMCDA IS THE NAME USEDe

DETERMINATION OF EI AND OEIDB
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500 BFAC=1.0
EI=0¢5772157+AL08G(B)
DEIDB=1./8

510

D6 510 1=1,50.1

Al=]

IF((BFAC*B)eGT+1+E70) GO TO 510
BFAC=BFAC*B/Al

TMPEI=BFAC/AL

EI=EI+TMPEI

DEIDB=DEIDB+BFAC/B
IF(ABS(E]%]eb=4)=aBS(TMPEI)) 510,510,520
CONTINUE

520 CONTINUE

600

610

DETERMINATIBN BF SSTAR AND DSTRDSB
SSTAR=0.0

DSTRDB=0.0

PART1=1.0

PART2=2Z14%21

PART3=2Z2x22

FAC=2.0

DO 610 1#3,50,1

IF(PART1+GTeleE70) GO TO 610
PART1=PART1x(=B/(21%22))

PART2=PART2x L1

PART3=PART3%(=22)

Al=]

FAC=FACxA]

TMPSTR=(PART1/(FAC*¥(A]=2+¢0)) )x(((PART2=PART3)/(21+422))xx2)
SSTAR=SSTAR+TMPSTR ’
DSTROB=DSTRDB+(AI=240)*TMPSTR/B
IF(ABS(SSTAR*1+E=4 )=ABS(TMPSTR)) 610,610,620
CONTINUE .

620 CONTINUE

£ W=

1
e
1
2
3

1
2

F WN e

DETERMINATION OF L2

L2

Le

= (1e/(U*Qx¥B)+EI/24+(EXP(B)*(=5ex(Bxx5)=36sx(Bxxy)
+30e%#(Bx%3)+3045(B¥%2)=18¢%(B) =360 )+6e%(Bxx4)+45¢x(B*x3)
+60% (B¥¥2)+540%(B)+36¢)/(108ex(B*%x5) )+SSTAR/ (Q*Q0%x21%22)
*(((Z1=22)%%2)/(2¢%Q¥Q¥21%22))%(0e¢5772157+ALBG(3+0)
+001666667=ALEG(B)))

= Le «(((Q¥Q¥EP2)/(9¢%EPI1 % AMZRO* (Bxx4)))
F(EXP(B)¥((B¥*4)+5¢% (B**¥3) 43¢5 (B2 )=12¢%(B)+60)

=4 oS5%(Brxy )30 (Br¥3)¢b6s%(BAX2)+6e%(B)=6y) )

DETERMINATIBN 6F DL2DB
DL2DB = (=1+/(U*QxB*B)+DEIDB/2++(EXP(B)x(=5,5(Bx¥6)=36e4%(B*x5)

+660%(Brr4 )m30 05 (B¥23) =108 1% (B¥22)+36e%(B)+1800)=bex(BXrrk)
"0 ¥ (Br43 )18 ex (B*%2)=216+%(B)®108¢)/(10Bex(B*¥6))
+DSTROB/ (Q*Q*L1%Z2)+(((Z21=22)%%2)/(2e%Q¥QnZ1%22%B)))

oL2DB = DL20B =(((Q¥I¥EP2)/(9e2EP1¥LAMZRO¥(Bx*5)))

X(EXP(B)¥((B**¥5)+5¢% (B*¥4)@2e% (B¥¥3)=1Bes(B8¥3)+42e%(B)m24s)
+3 e (B¥%3 ) 1205 (Br22)w18ex(B)4240))

DETERMINATION BF LL2
LL2 = (((18ex(Q)+61e%(Q¥¥2)421e3(Q3%3)=6e5(Qx%4))/(48ex(Qur2)

¥(1e#@)) )+ ((loemPex(Q)elo¥(Qu¥2)+1e¥(Q2%3)w(Qxx5))
$ALOG(lo4G)mlex(1e+Q¥Q0)%(1e=Q)%ALOG(1omU)e(2e+lex(Q)
+20% (Q¥¥2)+50% (Q*%3 )= (Q¥%5) ) ¥ALEG(2¢+Q )+ o % (1e+0%0Q)
¥(2e=Q)%ALOGICemQ) )/ (8ex(Q3¥3))=0e5772157)
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C
C DETERMINATION BF SIGMC?2
SIGMC2 =16¢%LP2¥(=0e5%( ((Z1=Z22)%%2)/(Z1%2Z2)+0%Q)*ALOG(PHI*KAP)
1 +QsQx(LL2+L2))
C .
C DETERMINATION OF DSG2DA
DSG20A = (=B/AZR) % (16 «8ERP2¥Q+Q¥DL2DB)
C
C DETERMINATION BF L1 . )
Ll = ((EXP(B)*%(23+%(B¥%2)+9¢%(B)+12¢)mbe¥(Br*3)wB8ex(Br¥2)
1 =9ex(B)=12¢)/(18e%(B¥83))=E])
Cc
C DETERMINATIOBN OF DL1DB
DLIDB = ((EXP(B) % (2343 (B¥%3)=14¢¥(Br¥2)mbes(B)=360)
1 +8ex (B¥¥2)418ex(B)+364)/(18¢%(B¥%4))=DEIDB)
C .
Cc - DETERMINATION OF LL1 . . X
LLI = (101544314=(6e%(Q)+15e%(Qx¥2)+21 0 (Q¥%3)=130%(Qxx4)
1 =35e¥(Q¥¥5)+60%(Q¥%6))/(12+% (Q¥*¥2)¥(1e+Q )% (1e=QxQ))
2 +(2emQ¥Q*(1e~WxQ))*(ALOG(2e+G) )/ (2e%(10=QxQ))
3 +(1lem2ex%QxQ)*¥(ALBG(1e+2+%0Q))/(1e=0%Q)
& FU(Le=QxQ)2¥2) % (ALBG(10+Q) )/ (2%Q%Q))
LL1 = LL1=(((21=Z2)%%2)%((1e/3¢)m(2¢%Q%Q%(ALOG(3¢/(2¢4Q)))
1 /{1e=Q%¥Q)) )/ (2ex21%72%(1eeQ@xQ)))
C
Cc DETERMINATION OF SIGMC1
SIGMC1 = Z2exEP1¥(ALOG(PHI¥*KAP)+LL1+L1)
C
C DETERMINATION OF DSG1DA
DSG1DA = («B/AZR) x(2¢¥EP1*DL1DB)
C
C DETERMINATION OF JMCALC
JMCALC = SIGMC1#LAMZRO +S]GMC2
C
C DETERMINATION OF DJUMCDA
DJUMCDA = DSG)IDA*LAMZRO+DSG2DA
C
C THE CALCULATIONS ABOBVE DETERMINE JMCALC AND DJUMCDA FBR A GIVEN AZR

ccccceecceeccececeecccecccecceececcceeccceeeccceecccceccccecceecccecccecceeccccecccce
C
DELAZR=(JMC=JMCALC)/DJMCDA
AZR=AZR+DELALR/DD
IF(AZReLEs1¢E=8) AZR = Q¢5%(AZR=DELAZR/DD)+1+1E=8
IF(AZR+GT«20¢E=8) AZR = 20+E=8/0DD
IF (ABS(DELAZR)=¢5E=12) 700,480,480
480 CONTINUE

CALCULATION OF LMCALC(I) AND STANDARD DEVIATION OF
LAMBRA(1) e= STDLMs) JMC == STDJUMCs LAMZRO == STDLZO,
AZR =« STDAZR»
700 SUMDIF=0Q.0
DO 710 I=1,N
LMCALC(1)=LAMZRO=S¥SQRTI(C(I))+EP¥C(I)%ALOG(C(I))+JIMC*C(])
DELTLM(I)=LAMBDA(] )=LMCALC(])
LMSTAR(I )= (LAMBDA(I )= AMZRO+S*SQRT(C(I)))I/(C(I))
LMPRIM(I)=LAMBDAIT ) +S*SGRT(CII))=EP¥C(1)%ALBG(C(I))
710 SUMDIF=SUMDIF+(DELTLM(I)*x2)
STOLM=SQRT (SUMDIF/(A11=240))
STOJUMC=STOLM*SORT(ALL/DETD)
STDLZO=STDLM4SQRT(A22/DETD)

anooan
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STDAZR=ABS (STDJML/DJUMCDA)

CALCULATION BLOCK COMPLETED; CALCULATED BUTPUT BLOCK BEGINS.
WRITE(6,930)LAMZRO,STDLZY

930 FORMAT(1X/'OLAMZRO =1'4X,FBe3,4X'STDLZO ='4XsFBe3)
WRITE(6,935)S,ALPHA,BETA

935 FORMAT (6X!'S- =14XsFB8e3,5%s ALPHA =16XsFBeS,4Xa'BETA ='5X,F8e4)
WRITE(6,9401EPIEPLEP?

940 FORMAT(SX'EP =1,F12:3,7Xs'EP]1 =15XsF9e5,5Xs'"EP2 ='4XsF9¢4)
WRITE(6,942)S1GMCL,LLL1sLY

942 FORMAT(' SIGMC1 ='",F13e¢4s6Xs'LLY =", SXsF9e5,6Xs'LL = '2F12¢4)
WRITE(6,944)SIGMC2,LL2sL2

S44 FORMAT (' SIGMC2 ®'",F13+4s6Xs'LL2 =")5XsF9e¢5,6Xs1L2 = ',F12e4)
WRITE(6,945)JINCsSTDIMCoIMCALC

945 FORMAT (4X'UMC =120F11e¢2,5X1STDUMC = 'F9y2:5X'JMCALC =21F1162)
AZR AND  STDAZR CHANGED TO ANGSTREMS
AZR=AZR¥1.E8
STDAZR=STDAZRx31.E8
WRITE(6s950)AZR)STDAZRYII

950 FORMAT(4X'AZR ='6X,F7e¢423Xs'STDAZR ='6XsF7eb7Xs 11 =',6Xs12)
AZR CHANGED BACK TO® ANGSTROMS
AZR=AZR*1+E=§
PHI CHANGED T®& ANGSTROMS
PHI = 1.E3%PH]
WRITE(65,960)B,PHINQ

960 FORMAT(6Xs'B =1 ,)0KsF8ebstXs'AZR¥B =1 35XsFBe4,8Xs'Q ='s6XsF8e5)
WRITE(6,965)L,STDLM

965 FORMAT('OTHIS RUN CONVERGED AFTER 'I3,!' ITERATIONS WITH A STANDA!',
1'RD DEVATION BF 'F8.3) .

WRITE(6,970)

970 FORMAT(i1X/' I c(l) LAMBDA(I) LMCALC(I) DELTLM(I) LMPRIM(I)!
1,' KAPPA(I) KAPPA(I)*xA KAPPA(l)»AxB LMSTAR(]) LMPRIM(I) ALOG(
2c(I1)) V,71X)

C(I) CHANGED T& MOLES/(LITERS#10xx4)
0B 990 I=1,N
KAPPA(I)=KAP*SQRT(C(I))
KAPAA(I)=KAPPA(])*AZR
KAPAAB(I )=sKAPPA(I)*AZR¥B
LOGC(1)=ALBG(C(]))
Cll)=C(I)x1ek4
KAPPA(I)=1+¢E=8+KAPPA(])
WRITE(6,980)31sC(I)sLAMBDA(I)»LMCALCII)IDELTLM(I)SLMPRIM(I)SIKAP
1PA(I s KAPAA(T)sKAPAAB(I)JLMSTAR(I)SLMPRIM(I),LOGC(])
980 FORMAT(1X, J203XsFBo4s3XsF703s3X0F703,s3XsF703s3XsF7e323X2F7¢5,3
IXsF705:3XsF705sBX2F902s4XaF70302XsFB8ekpil1X)
9390 CONT INUE
GG TO 10

1000 CONTINUE
RETURN
END
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PROGRAM SIX

APPENDIX 2

COMPUTER PROGRAM USING THE MURPHY-COHEN EQUATION

FOR ASSOCIATED ELECTROLYTES

=% A LEAST=SQUARES FIT BF CONDUCTANCE DATA FOR

ASSOCIATED ELECTRBLYTES BF ANY CHARGE TYPE USING THE
MURPHY AND COUHEN EQUATION.

THE GENERAL FORM OF THE MURPHY=CBHEN EQUATION IS:

LAMBDA (I )=LAMZRO=S*SURTIC(I)*G(I))

WHERE

WHERE

THE FOBLLBWING

N

AN
AM(T)
D

ETA

T

Z1

2
LAMZRY

- LAMZR2

LAMZRO
AZR

cen)
LAMBDA(I)
ALPHA
BETA

EP

EPL

EP2

S

JMC

LMPRIM(I)

Y

B
SIGMC1
SIGMC2
SUMDIF
PHI
STOLM

A1l THRU Ag23

All
LMPRIM(I
LMSTAR(I)
LMCALC(I)
STDKA
STDKA
STDAZR
STDLZY
DELTLM(I)
KAPPAL(I)

1

-
-
-
-
-
LX ]
--
-
-
-w
-
-

+EPXC(I)*G(I)*ALOGIC(I)*G(I))+JMC¥C(I)*G(I)
=KA¥DLMDKA(])

OLMDKA(I)wewF (1 )*(P*¥LAMBDA(I)+Z3%(LAMZRO=LAMZRN

= AMZR3= (S=SN)*SQRT(C(I1*G(I1))))*C(I)*G(I)

1S A POSITIVE INTEGER DEFINING A DATA TABLE POSITION

NAMES ARE USED IN THE PROGRAM}

NUMBER OF DATA POINTS IN A DATA GROUP

FLOATING POINT VALUE BF N

ALPHAMERIC WORD COBNTAINING TITLE CARD DESCRIPTIGEN
DIELECTRIC CONSTANT

SOLVENT VISCYUSITY

ABSOLUTE TEMPERATURE

UNSIGNED CHARGE NUMBER BN THE POSITIVE IGBN
UNSIGNED CHARGE NUMBER ON THE NEGATIVE IGN

JONIC EQUIVALENT CONDUCTANCE AT INF DIL 8&F PGS 16N
IONIC EQUIVALENT CONDUCTANCE AT INF DIL OF NEG ION
EQUIVALENT CONDUCTANCE OF SBLUTI®GN AT INF DIL
DISTANCE BF CLOBSEST APPROACH 8F TwO IONS

MBLAR CONCENTRATION

EGUIVALENT CONDUCTANCE

RELAXATION FIELD COEFFICIENT BF ONSAGER EQUATIG®N
ELECTROPHBRETIC CBEFFICIENT OF HGNSAGER EQUATION
COEFFICIENT OF THE TRANSCENDENTAL TERM
COEFFICIENT OF THE TRANSCENDENTAL TERM
COEFFICIENT BF THE TRANSCENDENTAL TERM

LIMITING COEFFICIENT IN ONSAGER EQUATIBN
CEBEFFICIENT OF THE LINEAR TERM

"MUDIFIED" EQUIVALENT CONDUCTANCE

BJERRUM PARAMETER

CEEFFICIENT OF LINEAR TERM
COEFFICIENT OF LINEAR TERM

SUMMATION OF THE SQUARES OF DELTLM(])

STANDARD DEVIATION BF LAMBDA(Il) VERSUS LMCALC(I)

DETERMINANT VALUES FOR A LEAST SQUARES FIT
FLOATING PQINT VALUE 6F N

31
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KAPAA(I) ==

KAPAAB(]) ==

AACT ww DISTANCE OF CLOSEST APPROACH FBR ACTIVITY COEFFICENTS
KA == JON PAIR ASSOCIAT]ON CONSTANT

FCTR == FACTOR FOR DETERMINATING LAMZR3

REAL LAMBDA(30),LMPRIM(30),LMCALC(30)sKAPAA(30)sKAPAABI(3
10),LBGC(30)sKAPPA(30),LMSTAR(30)sLMIBNCI(30)
DIMENSION C(30)sDELTLM(30)2AM(20)sG(30),GSTAR(30)sWPRIM(30),CG(30)
1,DLMDKA(30)sF(30) . )
REAL LAMZRO,LAMZR1L,LAMZR2,LAMZR3SIKASUMCONULINU2SKAPILLLILLSLL2AL2Y
1JMCALC
DATA DECK SHOULD CONTAIN A TITLE CARD» A SOBLVENT CARDs A SOLUTE
CARD,» CONCENTRATION DATA CARD(S)s AND A CONDUCTANCE DATA
CARD(S) FOR EACH DATA GRBUP. A BLANK CARD INDICATES NGO
-FURTHER DATA GROUPS. '
TITLE CARD CONTAINS N AND TITLE OF DATA GROUP
10 READ(s:iOO)Nl(AM(I)1131119’
100 FORMAT(12,1944)
WRITE(65300)

900 FBRMAT{1H1,»'PROGRAM 6 =w A LEAST=SQUARES FIT B6F CONDUCTANCE DATA
1 FOR ASSOCIATED ELECTROBLYTES OF ANY CHARGE TYPE'2/221X2'USING THE
2MURPHY AND COHEN EQUATIONe'2/,21Xs 'LARRY My SHADWICK BOBX 112 c
3HEM DEPYT GRAD RESEARCH!')

AN=N

CHECK FOR BLANK CARD
IF(N)1000,1000,105

SBLVENT CARD CONTAINS D, ETA, AND T

105 READ(S5,110)D,ETALT

110 FBRMAT(Fb-E;FéOblfboE)

SOLUTE CARD CONTAINS Z1, Z2s LAMZR1, LAMZR2, L AMZRO¥ESTxs» KAXEST%*,
LAMZR3*EST¥s AACT )
READ(50115)leZE'LAMZRIILAMZRelLAﬂZRUIAZRIKAILAMZRalAACT
115 FORMAT{2F100s3F693,F4e2,F600sF6:3sF4e2)
CONCENTRATION DATA CARD(S) CONTAIN C(I)
READ(5,120)(C(J)el=1sN)
120 FORMAT(12F6e4)
CONCENTRATIEBN DATA CHANGED T8 MOLE /LITER VALUES
DO 125 I=1,.N
G(I)=1»
GSTAR(I)=1»
Cll)=Cll)lxlebk=y

125 CGtIN=C(])aG(1)

CONDUCTANCE DATA CARD(S) CONTAINS LAMBDA(])
READ(S,130){LAMBPA(I)al%1sN)
130 FORMAT(12F6¢3)
INPUT OF DATA CEMPLETE} NBW PRINT INITIAL OBUTPUTY
WRITE(6,905) (AM{1},]1=1,19)

905 FORMAT{(1HO219A%,7)
WRITE(6,910)D,ETANT

910 FORMAT (' SOLVENT DaATA - D = '2F7+3,
1! ETA = Y4F 365! T = 19F6e2)
WRITE(6,915)121522,LAMZR12LAMZR2
915 FERMAT!' SBLUTE DATA - Z1 = 'yF24¢0,
1! 2 = YsF2e0s ! LAMZRY = ‘s
2F74¢3,! LAMZKRZ = 12F7¢3)
IF{AZR«£Q40¢0) AZR=340

KAaAMAX] (KA»Se0)



920

325

200
205

210
215
220

-4
230

235

300
3085

310
315

320

325

1)

33

WRITE(6,920)LAMZRO, AZR)KA, LAMZR3

FORMAT (' INITIAL ESTIMATES - LAHZRO = Y2F73,
g AZR * 12F5e2,5 1 KA = '2F8e4,
2! LAMZR3 = Y9F7¢3) '

AZR CHANGED T6 CENTIMETERS

AZR=AZR%1+E=8

WRITE(6,925)N,AACT

FORMAT (' MISCELLANEBUS - N = 112,

1! AACT = '25F542)

PRINTING OF INJTIAL DATA COMPLETED) CALCULATE BASIC CONSTANTS
LMZ3SwW=0

IF(LAMZR3eNE»0O) LMZ3SwWe}
IF(Z1=22) 205,2102205

NUi=2Z2

NU2=2Z1

PsAMINL (NUlsNU2)

GO TO6 215

NUl=1.0

NU2=1.0

P=1+0

IF(LAMZR2) 225,220,225

LMZRSW=]

GO 70 235

IF(LAMZR1) 235,230,235

LMZRSW=2

GG 7O 235
SGRTHW=SERT(O«5%(NU1xZ1%Z1+NU2%Z2%Z2))
PHI=16¢7098E=4421%22/(DxT)
KAP=0¢502915E10%S0RTW/SART(D*T)
23=ABS(Z21=22)

IN=AMINL1(Z1,Z22)
VALFAC=Z3/AMAX1(Z41,22)
ZDIF=AMAX1 (14,231
JMC=(Z1%Z2)%¥3%160¢=23%%34700.
Al11=sN

DO 350 L=1,20

IF(LMZRSwW=1) 310,305,310

LAMZR2=L AMZRU= L AMZR]

GO TO0 320

IF(LMZRSW=2) 320,315,320

LAMZRI=LAMZRU=LAMZR2

GO TO® 320

IF(LMZ3SWeEQel) GO T9S 325

LAMZR3=Z3/AMAX1(21,22)%(((Z3=P)/ZDIF)*xLAMZRY
+((Z2=P1/2D1IF )¥LAMZR2)

LAMZRN=( (Z2=P)/ZDIF) %L AMZR1+((Z21=P)/ZD1IF )sLAMZR2

G=SQRT((Z1%¥Z22) *»(LAMZRI+LAMZR2) /((Z21+Z2)% (Z22%LAMZR1+LAMZR2%Z1))

AON=0Q.0

IF(Z1eNE®Z2) (QON=SQRT({ZN®Z3)¥ (LAMZRN+LAMZR3 )/ (Z3+ZN)
S (ZNXLAMZR3+Z3%LAMZRN) )}

ALPHA=2+8012E6%71%22%SURTWU%G/((100+Q)»((DxT)*¥%1e5))

ALPHANS2 s BO1CE6*Z3*ZN¥SQRTWHGIN¥QAN/ ( (1 0+0N)&((D&T)¥¥105))

BETA=41¢243%(21+Z2)%SQRTH/(ETA®({SART(D*T)))

BETAN=414243%¥(Z3+ZN)*SURTW/(ETA*(SQURTID#T)))

S=mALPHAXL AMZRU+BETA

SN=ALPHANS (LAMZR3+LAMZRN)+BETAN

EP1m((Q*¥KAP*PH] ) *%21/12+0

EP2= (KAPXFPHI*BETA) /1640
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EP=EP1 ¥LAMZRU®4 s O%ERZ¥ (Q*Q+( (21=Z2)%%2)/(21%22))
TMPLMO=LAMZRYD
C RESET DETERMINANT VALUES 10 ZEROG,» PRIOR TO LEAST=SQUARES APPLe
A12=0.0
A13=20.0
A14=040
A22=0.0
A23=0.0
A24=040
A33s040
A34=0.0
SUMDIF=0.0
DO 340 I=1,N
TEMPGS=GSTARI(])
DO 330 II1=#1,10
LMIONC (I )= AMZRO=S*SQRT(CG(I))+EP%CG(I)%ALOG(CG(2))

1 +JMC*CG (1)
GSTAR(I)=(LAMBDA(I)=VALFAC*( (LAMZR3+LAMZRN)

1 «SN*SWRTICG(I))))/(LMIBNC(]I)=VALFAC

2 *((LAMZR3+LAMZRN)=SN*SQRT(CG(I))))

IF(GSTAR(J)eGTele) GSTAR(I) = 140
IF(GSTAR(I)elLTeOv) GSTAR(I) = Q1
G(I)=1em(Z18Z2%P¥(1e=GSTAR(I))/(SQRTW¥SQRTHW))
CG(I)=C(I)*G())
IF(ABS(GSTAR(I)=TEMPGS) e .T¢0+00005) G6 TO 337

330 TEMPGS=GSTARI(])
337 FI{I)=EXP(=KAP¥PH]I*¥SQRT(CGI(I))/
1 (1*+1.E=8#KAP*AACT*SQRT(CG(I))))
DLMDKA(I)==wF ()% (P*LAMBDA(I)+Z3*(LAMZRO=LAMZRN=LAMZR3
1 w(S=SN)¥SQRT(CG(I))))I»CG(I)

LMCALC(L)=LMIONC(I)+KA*DLMDKA(I)
DELTLM(I)aL AMBDA(I)=LMCALC(I)
A12=A12+CG( 1)
A13%A13+DLMDKA(I)
A22%A22+CG(I)*CG(T)
A23%A23+CG(I1)*DLMDKA(])
A33%A33+DLMDKA( 1) *DLMDKA(I)
AL4mAL4+DELTLM(I)
A24%A24+CG(I)*DELTLM(I)
A343A34+DLMDKA( I} ¥DELTLM(I)
340 L SUMDIF=SUMDIF+DELTLM(I)*¥DELTLM(I)
DETLMZ=(A13%(A24%A23))+(A14%(A22%A33))+(A12%(A23%A34))
1 ®(A12% (AQ4%A33))=(AL13%(A22%A34))=(A14%x(A23%A23))
DETJUMC=(AL13%(A12%A34 ) ) +(AL1%(A24%A33))+(A14%(A27%A13))
1 w(A14x(A12¥A33))=(A13%(A24%A13))=(A11%(A23%A34))
DETKA=(A14%(A12%A23) )+ (A11%(A22¥A34) )+ (A12%(A248A13))
1 «(A12%(A12%A34 ) )=(AL148(A22%A13))=(AL11x(A24%A23))
DETO=(A13%(A12%A23))+(A11%(A22%A33))+(A12%(A23%A13))
1 =(A12%(A12#A33))=(A13%(A22%A13))=(A118(A23%A23))
LAMZRO=L AMZRB+DETLMZ/DETD
JMC=JMC+DETUMC/DETD
KA=KA+DETKA/DETD
IF(ABS(LAMZRU=TMPLMO )@0+0005) 400,350,350
350 CONTINUE
c CALCULATION ©F IUN SIZE, AZR, BY M=C EQUATION USING DIFFERENTIAL
C APPROXIMATIONS
400 DO 480 1I=1,50.1
DD = 10 ¢+ 4o/2e%%]]
B=PHI/AZR
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ccececeeceecccecececccecceccecccccceecceccececceccceceeccececceccceccccceeccccceccececceccceccceccc
C THE CALCULATIONS THAT FOLLOW DETERMINEs» BY THE MwC EGWUATION, WHAT THE
VALUE 6F JMC, JUMCALC IS THE NAME USED» WOULD BE FOR A GIVEN VALUE
OF AZR; AS WELL AS THE DIFFERENTIAL BF JUMCALC WITH RESPECT TO THE
GIVEN AZR, DJMCDA IS THE NAME USEDe

ano0oo0on

aon

a0

500

510
520

600

610

DETERMINATION OF EI AND DEIDB.
BFAC=1.0

EI=0+5772157+4L06GIB)
DEIDB=1./8

D0 510 I#1,50,1

Al=]

IF((BFAC*B)sGTe1+E70Q0) GO TO 510
BFAC=BFACxB/AI

TMPEI=BFAC/AL

EI=EI+TMPE]

"DEIDB=DEIDB+BFAC/B

IF(ABS(EI*1eb=4)=ABQ(TMPE])) 510,510,520
CONT INUE

CONTINUE

DETERMINATION BF SSTAR AND DSTRDB
SSTAR=04+0

DSTRDOB=0+0

PART1=1.0

PART2=Z1%2Z1

. PART3=22%+22

FAC=2.0

D6 610 1=3,50s1

IF(PART1¢GT«1+E70) GO TO 610
PART1=PART1+(=B/(Z21%22))

PART2=PART2#<L1

PART3=PART3*(=22)

Al=] ’

FAC=FAC»A]
TMPSTR=(PART1/(FAC%(A]=2+0)))*(((PART2=PART3)/(Z21+22))%¥%x2)
SSTAR=SSTAR+TMPSTR

DSTROB=DSTRDB+ (AI=240)*TMPSTR/B

IF (ABS(SSTAR*1¢E=4 )=ABS(TMPSTR)) 610+610,620
CONTINUE

620 CONTINUE

FWN e

N -

1
2
3

1
2

DETERMINATIEON OF L2

L2

L2

= (1e/(Qx0*B)+EI/20+(EXP(B)*x(=5ex(Bx¥5)uw3pe»(Brxy) .
+30e#(EB2¥3)+30sx (B2%2)=18e%(B)m36¢ )+6e%(Bru4)+45¢%(B¥»3)
0% (B¥¥2 ) ¢5%e 5 (B)+36¢)/(108e¥(B¥*5) )+SSTAR/(Q*G*x21%22)

= (((21=22)%%2)/(2¢%0%¥Z21%22))%(0e5772157+ALOG(3+0)
+001666667=ALUG(B)))

= Le w(({{Q*Q¥EP2)/(9«%EP1¥LAMZRO»(B¥x4))) -
FIEXP(B)*¥((B**4)+5¢% (B*%3)+3 % (B*22)=12¢5(B)+60)

w4 oS¥(B¥x4 )30 % (Br2J)+bex(Brx2)46e%(B)=60))

DETERMINATION 6F DL2DB
DL2DB =& (=]1¢/(U*QuB¥B)+DEIDB/2e+ (EXPIB)*(®5,8(Bx%6)w36e%(Bra5)

+66e% (B¥¥%4 ) w30 (B323) =108 ex(B2¥2)+36¢%(B)+180s)=box(Brxy)
=90 #{Bx23)r1B8ex(B432)~216¢#(B)=108s)/(108ex(B**6))
+DSTROB/ (UG *Z1%Z2 )+ ( (21222 )%%2)/ (2e%0Q0%Qx/21222%B)))

DL20B = bL208B w(((Q*QREP2i/ (Fe»EPL*LAMZRO®(Bx*%5)))

¥(EXP(B)¥{ (B*¥5)45+% (B%%4 ) w2 o5 (Br33)=1B8e4(Bs22)+42e%(B)w244)
+30% (B33 )miex(By32)wlBeu(B)+240))
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DETERMINATION BF LL2
LL2 = (((18e%(Q)+Y61e%(Qu¥2)+421 5 (Q¥%%3)wb6ex(Quu4))/(48ex(Qxx2)
¥(1o4Q)) )+ (1o (Q)+1e¥(Qu%2)+1e5(Qx*3)m(@xx5))
FALOG(1e4Q)=1lox(1e+Q*Q)%(1e=Q)*ALOG(lem=Q)m(2e+1e%{Q)
$2ex (Q¥¥2) 450X (Q¥x3)w(Q¥25) ) *ALOG(2¢+Q )+ 0¥ (1e+0x3)

¥(2e=Q)*ALOGI2¢=Q) )/ (8e¥(Q¥¥3) )=0e5772157)

F WN -

DETERMINATIOGN OF SIGMC2

SIGMC2 =16+%EP2%(=0e5%( ((21=22)%%2)/(21%22)+Q%Q)¥ALOG(PHI*KAP)

1 +@x@x(LL2+L2))

DETERMINATION BF DSG2DA
DSG2D0A =  (=B/AZR)¥(16+4ER24Q*Q¥DL2DB)

. DETERMINATION O6F L1

cccc

480

700

L1 = ((EXP(BI%(23e%(B¥®2)+90%(B)+120 Jmte % (Bys3 )mBe¥(Brr2)
1 =9e¥(B)=12¢)/(18e%(B¥23))=E])

DETERMINATION OF DL1DB
OLIDEB = ((EXP(B)#(23+4(B*%3)=14¢%(Bx*2)e61%(B)=364)
1 +8ex (B¥¥2)218ex(B)+360¢)/(18ex(Bxx4))=DEIDB)

DETERMINATION BF LL1

LLl = (101544324 ( 6o (W) +15e%(Q¥¥2) 421 % (QAx¥3)w13ex(Qxx4)
=350 % (Q¥¥5)+602(Q¥%6)) /(124 (F¥¥2)%(1e+Q)%(Lew@xQ))
+(2e=Q¥Q%(1e=Q¥Q) )% {ALOG(2++Q) )/ (2ex{Le=Qxq))
+(1e=2+%QxQ)*¥(ALOG(1e+2¢%Q))/(1e=Q*Q)
+((1e=Q¥Q)*x2) X (ALOG(1+Q) )/ (2¢%Q%Q))

LLT = LL1=(((Z1=Z2)%%2)%((1e/3+)m(2¢%Q¥Q*(ALBG(3e/(2e+Q)))

1 /(1e=Q%Q)) )/ (2ex21%22%(1emQuQ)))

£ WN -

DETERMINATION BF SIGMC1
SIGMC1 = 2.4EP1*(ALOG(PHI®KAP)+LLi+L L)

DETERMINATION OF DSG1DA
DSGiDA = («B/AZR) x(2¢%EP1*DL1DB)

DETERMINATION OF JMCALC
JMCALC = SIGMC1#LAMZRO ¢+SIGMC2

DETERMINATION 8F DUMCDA
DJMCDA = DSG1DA*LAMZRO+DSG204

THE CALCULATICNS ABOVE DETERMINE JMCALC AND DJMCDA FBR A GIVEN AZR
ccgeceecceccceccceccceecccceccceccceeccccccccecececceceeccceccececceccececcccccece

DELAZR=(JMC®JMCALC)/DJMCDA
AZReAZR+DELAZR/DD
IF(AZRWLE«1+E=8) AZR = 0+15%(AZR=DELAZR/DD)+1+ik=8
IF{AZRsGT¢204E=8) AZR = 20Q4+E=8/DD
IF(ABS(DELAZR)=e5E=12) 700,480,480
CONTINUE

CALCULATION OfF LMCALC(I) AND STANDARD DEVIATIBON OF
LAMBRA(I) == STDLMy JMC == STDJUMCs» LAMZRH we STDLZO,
AZR == STDAZRS

STOLM = SURT(SUMDIF/(AL11=30))

STDLZO = STDLM*SWRT(ABS((A22%A33=AR23%A23)/DETD))

STOJUMC = STDLM#*SWURT(ABS((A11%A33=A13%A13)/DETD))
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STDKA = STOLM¥SQRT(ABS((A11%A22=A124A12)/DETD))
STDAZR=ABS(STDJMC/DUMCDA)

CALCULATION BLOBCK COMPLETED: CALCULATED OUTPUT BLOCK BEGINS.
WRITE(6,930)LAMZRO,STDLZD

930 FORMAT(IX/'OLAMZRE = '"4FBe3,! STDLZ0 = 'yFBe3)
WRITE(6,3935)S,ALPHA,BETS

935 FORMAT (! s = 1,5F8e3,! ALPHA = '5F8Be5,
1 BETA = '5F844)

WRITE(6,940)EPLEPL,EP2

940 FEBRMAT (! EP ®=',Fl4¢35! EPL = 15FS3e¢5,

1 EP2 = '2F9e4)
WRITE(6,942)SIGMCL,LLLSLY

942 FORMAT(' SIGMCI =',F15e4,! LLl. = '4F9e5,

1! L1 =1,F15e4)
WRITE(6,944)SIGMC2,L L2202

944 FORMAT (' SIGMC2="sF16e4s! LLe = 12FSe¢5,

i L2 =',F15e4)
WRITE(6,945)JMC,STDJUMCHJIMCALC

945 FORMAT (! JMC =',F13e2,! STDJMC = 19FS:2,

1 JMCALC .='sF13¢2)

AZR AND STDAZR CHANGED TO® ANGSTROMS
AZR=AZR¥1+E8

STDAZR=STDAZRx] .t 8
WRITE(65950)AZR)STDAZRI ]I

950 FORMAT(! AZR = VoF 704, STDAZR = 19F7e4,

1! I1 = '212)
AZR CHANGED BACK T@& ANGSTROMS
AZRmAZRx1¢E=8
WRITE(6,955)KA,STDKA
955 FBRMAT (! KA = 15F10e80? STDKA = '2F8e1)
PHI CHANGED 7@ ANGSTREMS
PHI = 1+E8*PHI
WRITE(6,960)8,PHINQ

960 FORMAT (! B = tyF8e4, AZR¥B = "F8eby

1 Q = '3F845)
WRITE(6,965)L,STOLM

965 FOBRMAT('OTHIS RUN CBNVERGED AFTER ']13,' ITERATIONS WITH A STANDA!',

1'RD DEVATION BF 'F8.¢3)
WRITE(6,970)

970 FORMAT (i1X/! I CtI) LAMBDA(I) LMCALC(I) DELTLM(I) ',
1'GAMMAL(IL) GAMSTR(I) ACTCOEF(I) KAPPA{I) KAPPA(I)*A ',
2'KAPPA(I)xA¥B1,/1X)

cn CHANGED T& MEOLES/(LITERS»10%x4)
DB 890 I=1,N
KAPPA(I)=KAP*SWQRT(C(I))
KAPAA(I)=KAPPA(I)%A2ZR
KAPAAB (]I )=KAPPA(1)*AZR*B
LEGC(I)=ALBGIC(1))
CllI)=ClI)x1ekh
KAPPA(I)=1 ¢E=BxKAPPAI(]) :
HRITE(élSSO)IIC(I):LAHBDA(I):LMCALC(I)JDELTLM(I)AG(I))

1 GSTAR(I)AF (122 KAPPA(I)sKAPAA(T )sKAPAAB(])
980 FORMAT (11X, I228XsF90423XsF7¢353XsF7e3s3XsF7e32s3X2F8e5133XsF8e5,
1 3XsF8eS5,4XaF705,3X9F70523X2F745)
990 CEeNTINUE
GO 76 10
1000 CONTINUE
RETURN

END



APPENDIX 3

THE MURPHY-COHEN EQUATION FOR
UNSYMMETRICAL, N-M, ELECTROLYTES

- The equation is:

A= A% - Sy + E'CInC + J'C

where S = aA® + 8%

_ q2«//Cab _ 2.8012 X 106 |Z,7,|u%?

«*73(Trq] - (T%q) (07372
_E/C (12,1 + ]7,])
B = 1,798,755mn
o = 41234(17,] + |7,]) w*
. 1| n(DT)%2
2 - 41 l ZZI (39 o)
qz = X : R + pe
- (L THIZ,I (12,1x + 1Z,113)
b= 12, 11Z,le? _ 16.7098 X 10°4]7.7 |
a = BT o1y °
/G - 0.502915 X 1010/5

(DT}~

= 2 2
w (lez +v,22

"= F - Tqa2 (Z ~-|Z

E Ele 4E2[q+.L_‘_%_£_Tlli
: 172

. _ (qxab)?

S V1

., _ «abg

E, = Tork

J' = o)a° 4 oé

a8
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o' = 2[! [] rab + f(q) + ]l(b)]
1.1544314 _ 6q + 1502+ 21a3« 13q%- 35¢° + 6g5

RACU 12921 + q)(1 - ¢°)
+ 2009 wnosq) + 125 wn(1s2q) #5El n(e q)
Z1-12,1])2
z%zizll(l ) (3 - "9“?4 Lol

: [[e,(23b2 + 9b + 12) - 6b3~ 8b2- 9b - 12]/18b3- Ei(b)]

—
-
~~
o
~—
1+

Q
!

g = 16y L s ainSe- + a2t () + 1, 01

18q + 612 + 21q q*
f,(q) = 1892(1+q) *[(1-2q+ ¢+ g3 - ¢ )n(1 + q)

- (1492)(1-q)In(1-q) - (2 + q + 292 +5q3 = & )In(2+q)
+ (1+q2)(2-q)1n(2-q)]/8q3 - 0.5772157]

12(b) = [ lb + /F (b) + rp (-5b2- 36bY% + 30h3 +30h2 _135—- 36) + 6hY
+ 45b3 + 6b2 + 54b +367/108b5 '+ 2|z1 o £ (b)
- g—5$—L—%+l (0.5772157 + 1n3 + 0.16666667 - 1nb)
gg—ﬁvgw [eP(b“ + 5b3 + 3b2 - 12b + 6) - ———-- 3b3+ 6b2 +
6b - 6]]
uz n n
TR 2 b 25 2 D M - (-]z
exb) = I TnChay LT 1T
“- ‘ b .
Ei(b) = 0.5772157 + 1nb ;g]ﬁTﬁ
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