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Abstract

This expository thesis examines cyclic rings and certain properties that they pos-

sess. Among these is the result that, if n is a squarefree Integer with m distinct prime

divisors, then, up to isomorphism, the number of rings of order n is exactly 2™,
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1. INTRODUCTION

The goal of this work is to explore cvclic rings, derive some results about these
structures, and investigate how these results influence ring classification. Scme basic
facts from abstract algebra will be used without a proof supplied in this work. Also,
although the focus of this work is ring theory, some results from number theory are
needed, and one of these results will be used without a proof supplied in this work.

Many different definitions are commonly used for a ring. The following will be the

working definition for a ring.

Definition. Let R be a set with well-defined addition and multiplication operations.
Then R is a ring if R is an abelian group under addition, the multiplication operation

of R is associative, and multiplication distributes over addition,

Note that, by the definition, a ring need not have a multiplicative identity. In some
sections of this work, however, alternative definitions of a ring will be considered to
see what proven facts would hold true even if a different definition were used for a
ring.

If R is a ring, then R™ will be used to refer to the additive group of R. The ofder
of the additive group of R* will be referred to as both |R| and the order of R. Also,
Or will be used to denote the additive identity of R.

Some basic facts from group theorv and number theory will be used in this work
without, proof. Readers who wish to see proofs of these results can refer to 3.

By the definition of a ring, R™ must be abelian. The focus of this work will be
on rings whose additive groups are cyclic. This is the motivation for the following

definition.

Definition. 4 rng R is 2 cyclic rng i BT is a cyclic group.

J
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2. HIisTORICAL REVIEW

Cyclic rings have been present in the literature since approximately 1964. Although
cyclic rings have been explored quite extensivelv since that time, it 1S much more

difficult to access information about these siructures than most topics in abstract

algebra.
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. Basic Facts asouT CvcLic RINGs

One reason why the studv of cyclic rings is important is that many familiar struc-
tures are cyclic rings. Among these are Z, and nZ for any positive integer n. Cyelic
rings are relatively easy to study because their additive structure forces them to have
certain properties. For instance, if R is an infinite cyclic ring, r is a generator of R¥,
and a,b € Z, then ar = br if and only if a = b. If R is a finite cyclic ring of order n,
T is a generator of R, and a,b € Z, then ar = br if and only if a = bmodn. Also,
subrings of cyclic rings are cyclic rings. All three of these results follow immediately

from elementary results about cyclic groups. Proofs shall be supplied for other basic

properties of cyclic rings.

3.1. Cyclic Rings and the Commutative Property. The following fact is well

known and is stated in [4].

Lemma 1. Cyclic rings are commutative under multiplication.

Proof. Let R be a cyclic ring, r be a generator of R¥, and 5,¢ € R. Then there exist
a,b € Z with s = ar and ¢ = br. Since st = (ar)(br) = (ab)r? = (ba)r® = (br)(ar) =

ts, it follows that R is commutative. O

3.2. Subrings and Ideals of Cyclic Rings. The next theorem is analogous to the

theorem from group theory which states that every subgroup of an abelian group is

normal. It is proven in [2].




Lemma 2. Every subring of a cyclic ring s an ideal.

Proof. Let R be a cyclic ring and r be a generator of B~. Since B is a ring, then
r* 2 R. Let ¥ = Z with r* = kr. Let S be a subring of . Then S is a cyclic ring.
Let 5 be a generator of S™. Since S is a subring of R, then s € R. Thus, there exists
z € Z with s = zr.

Let ¢ € Rand u € S. Then there exists g,h € Z with ¢t = gr and u = hs.
Since tu = (g7)(hs) = (gr){a(zr)] = (g7)[(he)r] = (ghe)r? = (ghz)(kr) = (ghkz)r =
(ghk)(zr) = (ghk)s € S and multiplication is commutative in R, it follows that § is
an ideal of R.

™
L
0.1. Generators of Cyclic Rings. Given a ring R and a generator r of R*, it is
desirable to find all of the generators of R* in terms of r. Since the addition in a
cyvclic ring resembles that of Z or Z, for some suitable n, then results about these

structures will be of assistance. For instance, the next lemma follows immediately

from the fact that 1 and —1 are the only generators of Z*.

Lemma 3. Let R be an infinite cyclic ring and r be a generator of RT. Then r and

—r are the only generators of R™.

The next result immediately follows from the fact that, if £ € Z,, then & is a

generator of Z if and only if GCD(k.n) = 1.

Lemma 4. Let R be a finite cyclic ring of order n. © be a generator of R™, and

k < Zn. Then kr is 2 generator of R™ if and only if GCD(k,n) = 1.




4. ConsTrUCTING CycLic RINGs

A simple method for constructing a cyclic ring from a cyclic group exists. In order
to define the multiplication for a cyclic group R, a generator r should be chosen.
After that, let r? be any element of R. Finally, define multiplication for all elements
of K as follows: If a,b € Z, then (ar)(br) = (ab)r?. It is routine to check that, for
any cyclic group, this procedure defines a multiplication such that the associative
property of multiplication and the distributive property hold. Thus, for any cyclic
group, this procedure does produce a cyclic ring. This method is demonstrated for
R = {0g,r,2r,3r}, a cyclic group of order four. Following are possible multiplication
tables for R.

Before defining r?:

(&)

Og!l r | 2r 37

Or |Or|0r|0g|0g

r DRgOR OR OR

2r ORJOR OR OR

?)T"ORM)R:OR OR‘
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5. SOME PROBLEMS

The only other generator of R is 3r. What if it had been chosen instead of r to
determine the multiplicative nature of R? When r? = 0p = Or. (3r)? = 0g = 0(3r),
and, when r? = 2r, (3r)? =2r = 2(3r). Thus, in these cases, the relationship between
a generator and its square is always the same regardless of which generator is chosen
to define the multiplication. Unfortunately, this is not always true. For example,
when 72 = r, (3r)> = r = 3(3r). Thus, the square of one generator is itself, but
the square of the other generator is its triple. In this case, which additive generator
should be chosen to define the multiplication for R? Another question is, given a
cyclic group with a generator r, which values of r2 produce isomorphic rings? For
the previous example, it can easily be verified that the only two cases that produce
isomorphic rings are r? = r and r? = 3r. This may yield a hint of how to determine in
general which cyclic rings are isomorphic given a generator r of the additive group and

the value of r*. These problems will be remedied by investigating a certain concept.




6. THE SOLUTION: BEHAVIOR

5.1. Definitions.

Definition. Let R be an infinite cyclic ring and & be a nonnegative integer. R has

behavior k if R* has a generator r such that r® = kr.

Definition. Let R be a finite cyclic ring of order n and k be a positive divisor of n.

R has behavior k of R™ has a generator r such that r*> = kr.

6.2. Theorems Regarding Existence and Uniqueness of Behavior. It will be
proven that, for any cyclic ring, behavior exists uniquely. Thus, behavior makes the

choice of a generator to determine multiplication quite natural.
Theorem 1. Any infinite cyclic ring has a unique behavior.

Proof. Let R be an infinite cyclic ring and r be a generator of R*. Then there exists
2 €Z with 72 = zr. If > 0, then z is a behavior of R. If = < 0, then —z > 0. By
lemma 3, —r is a generator of R™. Since (—7)? = (=1)2r2 = (=1)3(zr) = (—2)(=r),
then —z is a behavior of R. Thus, existence of behavior has been proven.

Let a and b be behaviors of R. Then R* has generators s and ¢ such that s2 = as

(33

and t* =bt. If s=1¢ then as = 52 = 2 = bt = bs, causing a = b. If s # ¢, then, by

lemma 3, ¢ = —s. Therefore, as = 5 = (=1)25? = (=5)? = 2 = bt = b(—s) = —bs,
causing a = —b. Since a and b are nonnegative, then g = b = 0. Thus. uniqueness of
behavior has been proven. O

Theorem 2. Any finite cyclic ring has o unique hehauvior.

Proof. Let R be a cvclic ring of order n and r be a generator of R with r* = ar for
some 2 = Z. Let & = GCDla.a} and 5 2 Z with a = b%. Since GCD(h. 7 = 1. rthen

there exists ¢ =

<
3
-
)
[}
1k
-
5
<
[@3
3
(V2]

ince GCDic, n) = L. then or is a zenerator of
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R™. Since (cry® = ¢*r* = c*lar) = *bkr) = c{ch)ikri = k(cr). then k is 4 behavior

of R. Thus, existence of behavior has been proven.

Let g and A be behaviors of R. Then g and A are positive divisors of n and R™
has generators s and v with s° = gs and v? = hv. Since v is a generator of R*, then
there exists w € Z with GCD(w, n) = 1 such that v = ws.

Since (hw)s = h{ws) = hv = v* = (ws)® = w?s> = w?(gs) = (gw?)s, then
gw? = hw mod n. Since GCD(w,n) = 1, then gw = A mod n. Since g and A both
divide n and GCD(w,n) =1, then g = GCD(g,n) = GCD(gw,n) = GCD(h,n) = A.

Thus, uniqueness of behavior has been proven. |

Note that, within the proof of this theorem, it was also shown that, if R is a finite

cyclic ring, 7 is a generator of R*, and a € Z with 7% = ar, then the behavior of R is

GCD(a,n).

6.3. Investigation of Behavior. It is well known that, for any ring, its order de-
termines some of its properties. It turns out that, if a ring is cyclic, then its behavior
determines some of its properties. The next theorem leads to the conclusion that a
cyclic ring is uniquely determined by its order and behavior. A similar theorem is

proven in [4]; its proof is similar to the one given in this work.

Theorem 3. Let R and S be cyclic rings having the same order. Then R and S are

isomorphic of and only if they have the same behavior.

Proof. Let R have behavior £ and r be a generator of R™ with r? = kr.

If R and S have the same behavior, then S has behavior &. Thus. ST has a

s

generator 5 with 57 = ks. [t is easy to show that the mapping 2: R — S defined bv

slery = cs for every ¢ = 2 is an isomorphism.
Conversely. if R = 5. let »: R — S be an isomorphism. If R is infinite. then S

is infinite and v is a nonnegative integer. If R is finite. then % divides ‘B! Since

= 5, then v divides 51 Since r is a generator of R~ and = ‘s an isomorphism.
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shen wirj s a generator of 57. Since iwi(ry)”- = wirs = wlkr) = kwir. it follows
that S has behavior 4. —

—

Because of the previous theorem, it will suffice to look at exactly one example of a
cyclic ring of a given order and behavior. All but one of these can be expressed as a

subring of Z or Z, for some suitable n.
Corollary 1. An infinite cyclic ring with positive behavior k is isomorphic to kZ.

Proof. It is clear that £Z is an infinite cyclic ring and & is a generator of k¥Z*. Since

k* = k(k), then kZ has behavior k. The corollary follows from theorem 3. d
Corollary 2. A finite cyclic ring of order n with behavior k is isomorphic to kZy,.

Proof. 1t is clear that kZg, is a cyclic ring and k is a generator of kZ7.. Since

kZkal = (k)| = k| = 5eniems = gonies = 2 = n and k2 = k(k), then kZy, has

order n and behavior £. The corollary follows from theorem 3. A O

Up to isomorphism, the only cyclic ring that cannot be described as a subring of

Z or Zn, is the infinite cyclic ring with behavior zero. The next definition deals with

this case.

Definition. Let B be the following subset of My, »(Z):




Corollary 3. An infinite cyclic ring with behavior zero is isomornhic to B.

Proof. Tt is clear that B is an infinite ring. [t is also clear that 7 € B if and only

u - 1 -1
if there exists u € Z with U = =u . Thus, B™ is a cyclic
U = 1 -1
1 -1 . . 1 -1 0 0
group and is one of its generators. Since = .
1 -1 1 -1 00
then B has behavior zero. The corollary follows from theorem 3. O

There are cyclic rings whose definitions are similar to that of B that, by corollary 1
or corollary 2, are isomorphic to kZ or kZ, for some suitable £ and n. For every

positive integer k, the following subset of Mj,2(Z) is an infinite cyclic ring with

behavior k:

c clk—-1) |
( celZ
c clk—-1)
For every positive integer n and every positive divisor k of n, the following subset

of Myy2(Z,) is a cyclic ring of order n with behavior &:

c clk-1)
cE Zn
c clk-1)
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7. CONSEQUENCES OF BEHAVIOR

[t rurns out that behavior has a lot of influence over the strucsure of a cvclic ring.

If the order and behavior of a cvelic ring are known, virtually all of its properties can

be deduced.

.1. Zero Divisors of Cyclic Rings. It will first be shown that behavior and order
determine which elements of a cyclic ring are zero divisors. The infinite case is quite

trivial. The next theorem follows immediately from corollary 1 and corollary 3.

Theorem 4. An infinite cyclic ring has zero divisors if and only if it has behavior

ZETO.

The following theorem is a consequence of corollary 2 and the fact that, if n € Z

with n > 1, then an element of Z, is either a unit or a zero divisor and cannot be

both.

Theorem 5. Let R be a finite cyclic ring of order n with behavior k and r be q

generator of R™ with r* = kr. Then the set of zero divisors of R is
D={zr | :€Z such that0 < z< n and GCD(kz,n) > 1}.
T'wo corollaries follow naturally from this theorem.

Corollary 4. 4 finite cyclic ring with composite order has zero divisors.

Corollary 5. If a finite cyclic ring R has behavior k > 1. then every nonzero element

of R is a zero divisor.

2. Nilpotent Elements of Cyclic Rings. Behavior and order also determine

1

which elements of a cvelic ring are nilpotent. Again. the infinite case is trivial. as the

next theorem follows immediately rom coroilary 1 and corollars 3.
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Theorem 6. An infinite cyclic ring hus nonzern nulpotent elements of und oniy of it

has behavior zers.

The next theorem deals with the finite case. It is also proven in 4] in a similar

manner.

Theorem 7. Let R be a finite cyclic ring of order n with behavior k and r be g

generator of R™ with r* = kr. Then the set of nilpotent elements of R is

N ={zr | 2 € Z such that every prime divisor of n dwides kz}.

Proof. By corollary 2, R = kZj,. Thus, it will be enough to investigate the statement
for rings of this form for any valid & and n.

Let s € N C kZy,. Thus, there exists z € Z with s = kz. By the definition of iV,
every prime divisor of n divides kz. Thus, every prime divisor of n divides 3. Because
of this, it is clear that s is nilpotent.

Let ¢ be a nilpotent element of kZgrn. Then there exists z € Z with = kz and
there exists a positive integer y with ¢ = 0. Since 0 = #¥ — (kz)¥, then n divides
(kz)¥. Therefore, every prime divisor of n divides kz. Hence, t € V.

[t follows that the nilpotent elements of R are exactly the elements of V. O

7.3. Cyclic Rings in Relation to Integral Domains and Fields. Behavior and
order also determine if a cyclic ring is a field or and integral domain. Before in-

vestigating this, it will be useful to determine which cyclic rings have multiplicative

identities.

v.3.1. Cyclic Rings with Multiplicative Identities. It turns out that behavior is the

only aspect of a cvclic ring that determines if it has a multiplicative identitv.




i
Theorem 8. Let R e u cyclic ring. Then R has 4 multiplicative identity if and oniy

of R has behavior one.

Proof. Let R have a multiplicative identity. Let u be the multiplicative indentity of
R, k be the behavior of R, and r be a generator of R™ with r? = kr. Let m = Z with

U =mr.

r=ur = (mr)r = mr* =mkr) = (km)r

If R is infinite, then km = 1. Since % is nonnegative, then k = m = 1. If R is
finite, then km = 1 mod|R|. Thus, GCD(k,|R|) = 1. Since k divides |R|, then & = 1.
In any case, R has behavior one.

Conversely, if R has behavior one, then R* has a generator s with 5% = s. Let
t € R. Then there exists z € Z with ¢ = zs. Since st = t5 = (25)s = 252 = 25 = ¢, it

follows that s is the multiplicative identity of R. d

The previous theorem shows that, if a cyclic ring has a multiplicative identity, then
it must be a generator of the additive group. Also, the above result coupled with
corollary 2 yields that, for any positive integers a and b, aZ,, has a multiplicative
identity if and only if GCD(a,bd) = 1.

A result from group theory is that, up to isomorphism, there is exactly one cyelic
group of a given order. The following corollary shows that the same fact would hold
for cyclic rings if a ring must have a multiplicative identity. The next corollary is also

stated in [4].




Corollary 6. Up fo isomorphism. there is ezactly one cyclic rmng of 4 gwen order

thai has a multiplicative 1dentity.

Proof. Let R be a cyclic ring having a multiplicative identity. By theorem 8, R has
behavior one. If R is infinite, then, by corollary 1, R = Z, and, if R has order n,

then, by corollary 2, R & Z,. |

7.3.2. Cyclic Rings That Are Fields.

Theorem 9. Let R be a cyclic ring. Then R is a field if and only if R has prime

order and behavior one.

Proof. If R is a field, then R has a multiplicative identity. By theorem 8, R has
behavior one.

Suppose that the characteristic of R is zero. Then R is infinite. By corollary 1,
R = Z, which is not a field. Thus, the characteristic of R is not zero. Since Risa
field, then the characteristic of R is a prime. Since R is a cyclic ring, then its order
must also be prime.

Conversely, if R is a cyclic ring of prime order p having behavior one, then, by

corollary 2, R = Z,, which is a field. O
The reader may determine which cyclic rings are integral domains but are not fields.

7.4. A Further Investigation of Subrings of Cyclic Rings. It has already been
proven that subrings of cyclic rings are cyclic rings as well as ideals. Some more
complex results, which involve the concept of behavior, will be proven in this section.

Given an infinite cyclic ring, it is quite easv to predict the order and behavior of
its subrings. The next theorem deals with this ropic. Since its proof is trivial, it will

not be supplied.

Theorem 10. Let R be an infinite cyclic mng with oehavior £ and r be a4 generutor

5 - NI 2 T} SN anyr - DL J ! N NS S
2] R WA rT = "7, Lhen S 1S i -)UD’/"’!”{] o7 <t g nd onYy L ALLET'? 2ZTI8T3 1 WOnTLE_gLZoZ‘L‘e

il




nteger mosuch that mrois a generator of S Moreover. if S is infinite (i.e.. m =10/,

then the dehavior of 5 is km.

The following corollary is an interesting fact about infinite cvelic rings. Its proof

is left to the reader.

Corollary 7. Let R be an infinite cyclic ring. Then R has behavior zero if and only

of it is isomorphic to all of its nontrivial subrings.

Given a finite cyclic ring, it is easy to determine the order of its subrings. It is
well known that, for any finite cyclic group and every positive divisor of its order,
there exists a unique cyclic subgroup of that order. This fact for cyclic group carries
over to cyclic rings. Moreover, given the order and behavior of a finite cyclic ring R
and the order of a subring S of R, the behavior of S can be determined. In [2], the

authors prove a result that relates to the next theorem; however, the technique used

in their proof is quite different from the proof of the next theorem.

Theorem 11. Let R be a finite cyclic ring of order n with behavior k. For every
positive dwvisor d of n, there ezists g umique subring S of R. Moreover, if a is the

integer such that ad = n, then the behavior of § is GCD(ak. d).

Proof. Let r be a generator of R™ with r2 = kr and a € Z with ad = n. Since 4 and
n are positive. then a is positive. Let S be a subset of R such that ar is a generator

of 7. Then S~ is a cyclic group under addition. Thus, S is a subring of R. Since

C o 'l , .
Sh=llar) = arl = o= T = @ = 2 = d. then S has order d. The fact

a
that 5 is rhe unique subring of B of order 4 follows from the discussion preceding the

statement of the theorem.

Since ur IS a zenerator of ST and lari? = g7t = asiir)

I

‘akjiar’, then bv

heorem 2. 5 has benavior GCDiak. 4). n




A result that is nseful here and is needed later is a result regarding rhe = function.
[t rakes positive integers as input and gives as its output the number of positive

divisors of its input. It is proven in [3] that the following rules apply to 7.
p P \2) g PP}

1. If pis a prime and z is a nonnegative integer, then 7(p*) = z + 1.

2. Ifa and b are positive integers with GCD(a, b) = 1, then 7(ab) = r(a)7(b).

The 7 function makes it easy to count the subrings of a finite cyclic ring. Since

every subring of a cyclic ring is an ideal, the following corollary is also useful for

counting the ideals of a cyclic ring.

Corollary 8. The number of subrings of a finite cyclic ring of order n is ezactly

7(n).

Proof. Let R be a finite cyclic ring of order n. By Lagrange’s theorem, the order of
a subring of a finite ring must divide the order of a ring. By theorem 11, for every
positive divisor d of n, there exists a unique subring of R of order 4. Since there are

7(n) positive divisors of n, it follows that there are 7(n) subrings of R. g

r.5. Cyclic Rings in Relation to Principal Ideal Rings. Behavior is the only
aspect of a cyclic ring that determines if it is a principal ideal ring.

In the next proof, the notation used for principal ideals is the same as that used
previously for cyclic groups generated by an element. No confusion should arise,

however, since this is the only proof in this work in which the notation refers to

ideals.
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Theorem 12. 4 cyclic ring is o principal ideal ring of and only if it has behavior
one.

Proof. Let R be a cyclic ring with behavior k£ and r be a generator of R™ with r® = kr.

If K has behavior one, then r®> = kr = 1r = r. Let [ be an ideal of R, Then [ is a

cyclic ring. Let 7 be a generator of I*. Since I is a subring of R, then 7 € R. Thus,

there exists z € Z with 1 = zr.
Let s € I. Then there exists m € Z with s = mi. Since s = mi = m(zr) =
(m2)r = (mz)r® = (mr)(zr) = (mr)i € (1), then I C (5).
Let ¢ € (7). Then there exists v € R with ¢ = fv. There also exists z € Z with
(z2)r* = (zz)r = z(2r) = zi € I, then (i) C I.

v =zr. Since t = iv = (zr)(z7)
Since [ = (¢), then I is principal, and it follows that R is a principal ideal ring.

Conversely, if R is a principal ideal ring, then, since R is an ideal of itself, then R

is principal. Let g € R such that R = (g). Since r € R, then there exists, h € R with

r = gh. There also exist a,b € Z with ¢ = ar and h = br.

r=gh=(ar)(br) = (ab)r* = (ab)(kr) = (abk)r

If R is infinite, then abk = 1. Since  is nonnegative, then &k = 1.

If R is finite, then abk = 1 mod|R|. Thus. GCD(k, |R|) = 1. Since k divides |R],

then & = 1.
Since, in any case, & = 1, then R has behavior one. O

[t may be beneficial to look at some cvclic rings with behavior other than one

D

in order to understand why thev are nor principal. The first example that wiil be

investigated is 2Z,» = {0.2.4,6.83. 10}. No principal ideal of this ring can contain

two elements of this ring, a multiple of 4 is

for example. because. bv multiplyving anv
obtained. Similarlv. in 3Z. no principal ideal can contain 3. In fact. the most that a
9

.

principal ideal of 3Z can contain are the muitiples of




The next corollary follows immediatelv from theorem 3 and theorem 12,

Corollary 9. Let R be a cyclic mng. The following are equivalent.
R has behavior one.
R has a multiplicative identity.

R s a principal ideal ring.
The reader may determine which cvclic rings are principal ideal domains.

7.6. Prime Ideals of Cyclic Rings. One result that will be proven is that every
nontrivial, proper, prime ideal of an infinite cyclic ring is maximal. Another result
that will be proven is that every proper prime ideal of a finite cyclic ring is maximal.
Before these results can be proven, the forms of prime ideals of cyclic rings need to
be known. Some other interesting results involving prime ideals of cyclic rings will
be proven along the way.

Because the trivial ideal is the only finite ideal of an infinite cyclic ring, then it has

to be considered separately. The following lemma indicates if the trivial ideal of an

infinite cyclic ring is prime.

Lemma 5. Let R be an infinite cyclic ring. Then {0} s a prime ideal of R if and

only if R has positive behavior.

Proof. 1f {Og} is a prime ideal of R, then R has no zero divisors. Since B has zero
divisors. then R is not isomorphic to B. Thus R does not have behavior zero. It
follows that R has positive behavior.

Conversely, if R has positive behavior &. rhen. bv corollarv 1. R = k7. which does
not have zero divisors. Thus. R does not have zero divisors. [t follows rhat [0} isa

prime ideal of R. Z
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Theorem 13. Let R be 4 cyclic ring with dehavior & and [ e an ideal of R such that
‘R :I'is finite. Then [ is vrime if and only if [ = R or there ezists g prime p with

GCD(k.p) =1 such that [R - I] = p.

Proof. Let r be a generator of R* with r2 = Lr Since [ is a subring of R, then I is
a cyclic ring.

If R is infinite, then, by theorem 10, there exists a nonnegative integer ¢ such that
ur is a generator of I*. Since [R : I is finite, then I is infinite, Thus, ir # 0 = 0.
Therefore, 7 # 0. By theorem 10, I has behavior k.

If R is finite, then, in any case, [R : I] is finite. Let n be the order of R and d be
the order of I. Since [ is a subring of R, then 4 divides n. By corollary 2, R = kZ,,.
Thus, I can be considered as a subring of kZy,. Let ¢ be the smallest positive integer

such that ik is a generator of 7. Since GCD(i,n) < i, then, by choice of 7, 7 is a

divisor of n. Since [I| = | (ik) | = lik| = @{%n—) = 7, 1t follows that [R: [] = i!%’ = 1.

Suppose that i is composite. Let a,b € Zwith1l <a<b<isuch that ab = ;.
Thus, ar and br are not elements of /. Since (ar)(br) = (ab)r? = i(kr) = k(ir) e I,
then [ is not prime.

Suppose that i is not composite and GCD(k, ) # 1. Then ¢ # 1. Since i is prime,
then GCD(k,4) = i. Therefore, i divides k. Let = € Z with & = iz, Since i # 1. then
r &l Since r* =kr = (iz)r = =(ir) € I, then I is not prime. It follows that [ is
prime implies that / = R or ; is a prime such that GCD(%,i) = 1.

If R is finite. [ is prime. and [ #= R, it follows that i is a prime with GCD(k,i) =1
such that (R : [] = i.

[f R is infinite, [ is prime. and & = 0. then. since no prime exists that is relatively

prime to %, then [ = R.
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[f R is infinite. [ is prime. and [ = R. then. by previous work. & is positive and
is a prime such that GCD(k.i) = 1. By corollary 1. R = §Z. [ = /kZ. and it follows
that [R:[] =:.

Conversely, since R is a prime ideal of itself, then I = R implies that [ is a prime
ideal of R. If p is a prime with GCD(k,p) = 1 such that [R : I] = p, then k # 0.
Since [R : I] =, then i = p. Thus, pr is a generator of 7.

Let c,d € R with cd € I. Then there exist f,g,h € Z with ¢ = fr, d = qr,
and cd = h(pr). Since (hp)r = h(pr) = cd = (fr)(gr) = fgr® = (fgk)r, then,
if R is infinite, hp = fgk, or, if R is finite, hp = fgk mod |R|. In either case, p
divides fgk. Since GCD(k,p) = 1, then p divides fg. Thus, p divides either for
g. Without loss of generality, assume p divides f. Let m € Z with f = mp. Since

c= fr = (mp)r = m(pr) € I, it follows that [ is prime. O

The following theorem is useful for determining how many prime ideals an arbitrary

finite cyclic ring has.

Theorem 14. Let py,...,pm be distinct primes, ay, . .., an be positive integers,
CLy-- s Cm € Z with 0 < ¢; < a; for every integer 1 with 1 <1 < m, z be the number of
¢; that are equal to zero, n =[] pi*, and k = [[2, p%*. If R is a finite cyclic ring

with order n and behavior k, then R has ezactly = + 1 prime ideals.

Proof. Let P be the set of all p; such that ¢; = 0, S be the set of all proper prime
ideals of R, and I, denote the element of S such that [R| = z|I;|. Define v: P — S
by 2(pi) = I,,. By theorems 11 and 13, © is well-defined.

Let [, € S. By rheorem 13, y is a prime with GCD(k. y) = 1 such that n = R =
y|1y1. Since y is a prime that divides n. then y = p; for some integer j with 1 < ; < m.
Since GCD/%.ps; = 1. then p; does not divide 4. Thus. ¢, = 0. Therefore. p; = P.

Since Zip: = [, = [, then - is surjective,
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Let pyopn £ P owith 2ip,r = 2ipy). Then [y, = I, Thus. 1y,

} = :‘[.Uh"
Pyilp,, = Ri = puily, = pal,, . then p, = py. Therefore. - is injective. Hence, 2 s
a bijection.

Since P contains z elements and a bijection exists between P and S, then S contains

z elements. Thus, R has = proper prime ideals. Since R is a prime ideal of itself, it

follows that R has z + 1 prime ideals. O

7.7

Maximal Ideals of Cyclic Rings. In order to prove the promised results
regarding prime and maximal ideals of cyclic rings, the forms of maximal ideals of
cyclic rings need to be known. Since every cyclic ring is isomorphic to either B, some
subring of Z, or some subring of Z,, for some positive integer n, then the next theorem

follows from the properties that maximal ideals of these rings must have.

Theorem 15. Let R be a cyclic ring and I be an ideal of R. Then I is mazimal if
and only if there ezists a prime p such that [R: I) = p.

Following are the promised results.

Theorem 16. Let R be an infinite cyclic ring and P be a nontrivial, proper, prime

ideal of R. Then P is a mazimal ideal of R.

Proof. Let R have behavior k. Since P is nontrivial, then [R : P] is finite. By
theorem 13, there exists a prime p such that GCD(k,p) = 1 and [R - Pl = p. By

theorem 15, P is a maximal ideal of R. O

Theorem 17. Let R be 4 finite cyclic ring and P be a proper prime ideal of R. Then

P is a mazimal ideal of R.

Proof. Let R have behavior 4. By theorem 13. there exists a prime D such that

GCDfk.p)=1land R: P! = p. By theorem 15. P is a maximal ideal of R, —_

The following cheorem is useful for determining how manv maximal ideals an ar-
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Theorem 18. Let n 92 a gosstive integer with m distine: orime dwwisors. [f R ois g

Simite cyclic ring of order n. then R Aus szactly m distinct mazimal ideals.

Proof. Let P be the set of all prime divisors of n, S be the set of all maximal ideals
of R, and I, denote the element of S such that |R| = r|l;|. Define o: P — S by
¢(p) = I,. By theorems 11 and 13, » is well-defined.

Let I, € S. Then y is a prime such that n = |[R| = y|Z,|. Since y is a prime divisor
of n, then y € P. Since (y) = [, then y is surjective.

Let a,b € P with ¢(a) = ¢(b). Then I, = I,. Thus, |I,| = \Iy|. Since a|l,| = |R| =
blIy| = b|L,|, then a = b. Therefore, i is injective. Hence, ¢ is a bijection.

Since P contains m elements and a bijection exists between P and S, then S

contains m elements. It follows that R has m maximal ideals. O




3. CLASSIFICATION OF FiiTe Rinags

Cyelic rings play an important role in ring classification. Unfortunatelv. nos all

finite rings can be classified in terms of cvclic rings, but most of them can.

8.1. A Specific Case: Zero Rings. It is clear that, up to isomorphism, the only
infinite cyclic ring that is a zero ring is B. It is also clear that, up to isomorphism, all
finite cyclic rings that are zero rings are of the form nZ,: for some positive integer n.

Some obvious properties of zero rings are that all of their subrings are ideals and
that they have no proper prime ideals. Also, two zero rings are isomorphic if and
only if their additive groups are isomorphic. This has some obvious yet interesting
consequences with respect to finite zero rings. The first is that every finite zero ring
can be written as a direct product of cyclic rings. The second is that, for every
positive integer n, up to isomorphism, the number of zero rings of order n is equal to

the number of abelian groups of order n.

8.2. The General Case. Some additional results are needed from group theory and

number theory in order to deal with the general case effectively.
8.2.1. Preliminaries.

Definition. Let n be a positive integer. Then n is squarefree if, for every prime p.

p* does not divide n.

[t is clear that a positive integer n is squarefree if and only if either n =1 or there
are distinct primes py, ..., pm such that n = [[2 p;.

The following lemma, is well known.
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Lemma 6. Let G he a fnite group with squurefree order. Then & s cyclic f and

only if G 15 abelian.

Proof. It is clear that G is cyclic implies that G is abelian.

If G has order one, then G is clearlv cyclic. Thus, for the remainder of the proof,
it will be assumed that G has more than one element.

Let G be an abelian group. Let py,...,p, be primes with |G| = []_,p:. Let
g1,--.,9n € G such that |g;| = p; for every integer + with 1 < 2 < n. Since G is

abelian, it can easily be shown that the element [],_, g; has order [];_; p; and thus

is a generator of G. It follows that G is cyclic. a

Any group of prime order is cyclic. The following is a condition on the order of a

ring to guarantee that it is cyclic.
Lemma 7. A finite ring with squarefree order is cyclic.

Proof. Let R be a finite ring with squarefree order. Then R™ is an abelian group
with squarefree order. By lemma 6, R™ is a cyclic group. It follows that Ris a cyclic

ring. O

Some other definitions commonly used for a ring involve requiring the structure to
have a multiplicative identity or not requiring that the multiplication be associative.
Note that the only portion of the definition of a ring used to prove the previous
corollarv was that the structure is an abelian group under addition. Thus. no matter

which of the mentioned definitions are used. the previous lemma holds.

3.2.2. The Muain Results. The next two results are the main results of this work. In
addition 5o their importance. these results. especiallv the fArst one. demonstrate a

strong connection between ring theory and number theorr. The next theorem is also

1

proven in 4} and “oilows ‘rom a theorem that is proven in
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Theorem 19 {The Counting Theoremi. Lei n be o positwe integer. Up o isomor-

phism. the number of cyclic rings of order n is ezactly 7(n).

Proof. By corollary 2, for every positive divisor & of n, up to isomorphism. kZp, is the
only cyclic ring of order n with behavior £. Since the behavior of a cyclic ring must
be a positive divisor of its order, then it is equivalent to count the positive divisors

of n. Since there are 7(n) of these, it follows that, up to isomorphism, there are 7(n)

cyclic rings of order n. a

The following statement contains no mention of cyclic rings; however, its proof

relies heavily on some of the facts that have been proven about these structures.

Corollary 10 (The Counting Corollary). Letn be a squareffee integer with m distinct

prime dwisors. Up to isomorphism, the number of rings of order n is exactly 2™.

Proof. f n=1, then m =0, and 2™ = 2° = 1. Up to isomorphism, there is only one
ring of order one, and the statement is true in this case. Thus, for the remainder of

the proof, it will be assumed that n > 1. Thus, m > 0.

By lemma 7, any ring of order n must be cvclic. Thus, by the counting theorem,

up to isomorphism, there are 7(n) rings of order n.

Let py,..., pm be distinct primes such that n = [~ ps.

m

m m
ry=7{[Ie ) =17t =]]2=2"
=1 =1

=1

It follows that, up to isomorphism. there are 2™ rings of order n O

Note that the counting theorem and the counting corollary hold even if the mulsi-

plication of a ring need not he associative. They do not hold, however. if a ring must

have a multiplicative identitv. Corollar 3 deals with shis issue.
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