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Abstract

Every cancerous tumors generates many number of blood vessels, which are
capillary tubes, to draw nutrients and grow. This is angiogenesis. If angiogen-
esis is inhibited, the tumor dies. It often works like a magic bullet for many
cancer patients. Since an infinite number of blood vessels, generated by the
tumor, is possible, and some of these vessels may die because of the resistence
imparted by the body, genetically, we have assumed that gene expressions from
cancer cells as a flux of fluid in the xyz~cartesian frame for mathematical mod-
eling. In this work, a mathematical model for the growth/decay of angiogenesis
(developed by Dr. Suhrit K. Dey) has been solved using numerical techniques.
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1 Introduction.

Cancer is a collection of disease with a common feature of uncontrolled cell growth[10].
Most tissues in the body can give rise to cancer and might yield several different types
of cancer with unique features. The body of a human being maintains homeostasis, a
state of dynamic equilibrium. Because of homeostasis, each cell in an organ, after its
birth, gets oxygen, food and nutrients to grow and works for the betterment of the
whole body and dies at a fixed time. This natural death of body cells is known as
apoptosis.The salient feature of the cancer cells is that apoptosis is disrupted, because
of the mutation of the cells. The p53 imbalance is one of the inmportant factors for
which the control on cell proliferation fails. P53 is a protein present in each cell and
it controls the growth and death of a cell during mitosis. In other words, cancer
cells escape the usual controls for cell proliferation that is present for each and every
cell in the body of a human being. Human body has its own mechanism of tracking
down these mutated cells and destroying them. This is done by the immune system
of the body. But, when the immune system becomes weak, these mutated cells gain
strength, grows uncontrollably and forms tumor.

In the beginning, tumors formed by the cancer cells are avascular, i. e., they do not
have their own blood supply and rely upon diffusion from the neighboring vessels for
the supply of oxygen and nutrients and the removal of waste products. As the tumor
grows, thr demand for the nutrients increase until the flux of nutrients to the tumor is
too small to supply entire mass of cells. In response to the shortage of oxygen, some
gene expressions take place which code for signalling molecules that are used to induce
nearby vessels to grow new capillaries to vascularize the tumor through a process
called angiogenesis. These are known as growth factors( e. g. primary vascular
endothelial growth factor(VEGF) and basic fibroblast growth factor(b/FGF)). These

growth factors diffuse from the tumor cells to the nearby primary vessels, and initiate

a cascade of processes, including the activation of endothelial cells that line the blood




vessel walls, inducing them to proliferate and migrate chemotactically towards the

tumor. This results in capillary network from the tumor to the nearby primary
vessels, thereby bringing essential nutrients to the tumor and providing a shorter
route for the spread of cancer cells to the other parts of the body.

Although angiogenesis is crucial to tumor growth, it’s not a unique process. During
the development of embryo, angiogenesis refines the unstructured capillary network
and produce a complex system of large and small vessels. Under normal physiological
conditions angiogenesis is regulated by a balance between angiogenesis promoting
and angiogenesis inhibiting factors. In normal tissue, angiogenesis is largely absent,
except in ovary, throughout the menstrual cycle, during wound healing and during the
formation of placenta. It does also occur during a variety of pathological conditions,
such as diabetic retinopathy, arthritis etc. Success of tumor angiogenesis provides a
plentiful supply of nutrients to the tumor and the tumor grows in size containing a
large number of cancer cells.

Other than helping the tumor to grow, angiogenesis also provides the crucial
link for the cancer cells to migrate to the other parts of the body. This is called
metastasis of cancer. The phenomenon makes many cancers very lethal, as without
the metastasis, cancer remains localized and somewhat easily controllable (e. g.
without metastasis the cancer may be controllable by removing the tumor by surgery).
So, in essence, if angiogenesis can be stopped, the tumor will die. Here, in our model,
angiogenesis is considered as a process used for the flux of mass as a tumor grows.
"The primary objective is the development and subsequent computational study of the
mathematical model so that the flux of mass, all around the tumor may be prevented.

Mathematical modeling can provide some significant insights to the process of an-
giogenesis. So far, many authors have developed mathematical models incorporating
the detailed biochemical and physiological information available regarding angiogen-

esis. In this work, the aim is to solve numerically the continuum model developed by




Dr. S. K. Dey for the growth/decay of angiogenesis in the presence of a mathematical

drug.
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Figure 1: Flow of mass in and out of area surrounding tumor

2 Mathematical Model(Dey)

In this work, we are studying Dey’s continuum model. In this model the tumor itself
and the growing capillaries are modeled by a slowly developing flux of mass in the
field. The human body is a three dimensional configuration[Figure 1]. Thus any in
vivo model requires three dimensional geometry. All human body cells are considered
as biochemicals and the unit to measure their concentration is same for different kind

of cells.

Let f be the flux per unit mass. Let dm = an infinitesimal mass = p dV', where
p = density of the mass in the tumor and dV' = an infinitesimal volume. clearly here
f=F(zyazt).
Consider a small change in f as Af = f(z+ Az, y+ Ay, z+ Az, t+ At) - f(z,y, 2, t).

Then we can write :

¥ _9f  Ofdc Ofdy  ofd:

dt ~ 8t Ozdt Oydt O0Ozdt (21)

Now the flux developing in three dimensional space is proportional to the velocity

8
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of biochemical fluid. So we can argue that

dx
f alongz = @1 E
and
dy
f alongy — GQE;
and

dz
f alongz — a3%

where a1, as, a3 are the constants of proportionality. For simplicity the proportional-

ity constants have been taken to be equal to unity. Then (1) can be rewritten as :

df _of .of .of Of
E—-E-Ff%-i—fa—y-F 5 (2.2)
S

A\

Now consider a control volume V enclosed by a surface area S. Let ¢ be the
concentration of the biochemical in V. Let 7 be the unit outward normal vector to
S. Clearly

q=fdm = fpdV

The principle of conservation of mass gives us the following relationship :

d . 2 5
— fpdV = Change in the growth of the tumor — J-ndS (2.3)
4l f

9

_————4.




_—)
where J = flux of f 7 = outward unit normal.

By the divergence theorem

//7% ds=///§Jdv (2.4)
S

|4

Fick’s law for the flux of biomass is given by

-

J=—vvf (2.5)

Substituting J with (2.5) into (2.4), we get:

/f JdV = —v // T2fdV. (2.6)

%=c+uv2f (2.7)

This gives us

If, by medication, this change in the growth of the tumor is rendered negative,
tumor should shrink, depending on the value of f. Here we must note that the property
of the malignant cell is to grow with whatever food it may get from the boundary.

Now our assumption is that the medication is trying to destroy the flux linearly,
i.e., the reduction in the growth of the flux is linearly proportional to the amount of
flux. Consider p be the rate at which the medication is trying to reduce the flux per
unit time. Then from (6), we can find that the rate of change of flux( assuming the
constant ¢ =0 ) :

df

i —pf+v*f (2.8)

Now, if we combine equations (2.2) and (2.8) we get our complete model :

9 8 %, 8
a—{+f5—£+f5£+f5£=—uf+vv2f (2.9)

This is a nonlinear hyperbolic partial differential equation. The term v y2f

denotes the dispersion of the biomass fluid from the primary site and the term f( 32 +
T

10




0 + B_f) represents the convection phenomena. Here v = coefficient of dispersion,
Y z

which means that the biomass are moving from the “more” concentration to the less

concentration area.

2.1 Dimension Analysis

The dimension of the flux f is length/time. Therefore, the dimension of the quantity

0 : . :
of is length/(time)®. The dimension of the convection component is length/(time)?,

ot

since the dimension of Z—ch is 1/(t¢me). Now the parameter u represents the destruction
of the flux f over unit time. The dimension of p is 1/(time). So the dimension of
the element —uf is length/(time)?. Also the dimension of the dispersion component
is length/(time)?. Let L stands for length and T stands for time here. Then the

dimension equation is given by :

L Lt L Lk 1L I?’L1
St tasrtar = —mat s
T TL TL TL TT TTL?
which by simplification yields :
L L
T2 T?
11




3 The Numerical Algorithm

In this work the mathematical model has been solved numerically by using a hybrid
numerical algorithm consisting of two step predictor-corrector scheme and simpson’s
rule developed by Dey and Dey[5,6]. The original predictor-corrector scheme [1] is
being used in 2 steps and then the simpson’s rule subsequently in order to achieve
better stability property. In the next section, stability of three dimensional predictor
corrector scheme has been studied. This hybrid model was chosen with the consider-
ation that the biological systems are moderately stiff and need algorithms with better
stability properties. In the predictor-corrector scheme forward explicit finite differ-
ence formula for extrapolation is used as a predictor along with a convex formula as
a corrector. The time derivative has been represented using forward difference ap-
proximation whereas the space derivatives in the convection components have been
approximated using backward difference approximation. The space derivatives in the
diffusion components have been approximated using central difference scheme.

The predictor in step 1 is the following:

~

Fije = Fljp+a (Fin—l,j,k2 - F}?j,k2) + a2(Fi7,lj—1,k2 - angk2) (3.1)
+a3(ﬂ’,},k—12 - 1,_'] k2) =Tk, ,j,k + :Bl(Fﬁ-l,j,k - 2Fi1,lj F::LIJ k)

+B2(F 1 4 2F]k+Fi7,lj+1,k)+:83(F;?j,k 17 2E e+ B k)

wherealz—éz—azzﬂag:At -—,u ﬂ1= VAt ﬁz—VAt
’ 4Ax’ 4Ay’ 4A7’ ’ 2Az2’ 2Ay?’
_ VAt
by = 2A 22
and

i=1,2,---NX,j=1,2,---NY,k=1,2,---NZ

The corrector at step 1 is given by

12




1
n+2

Fi,j,k = (1- ')’1)Fi,j,k +m (E?j,k +o (Fiz—l,j,k - Fi2,j,k) + 02(1:}?1'—1,1: - Fi2,j,k)

tos(FZ g — B2 — rE ke + Bu(Fimrjw — 2Fi ik + Fiprj)

+Ba(Fijo1h — 2Fi i+ Fijpap) + Bas(Fijio1 — 2Fij + Fijrpr))

(3.3)
where 7, is a convex parameter such that 0 < vy; < 1.
The predictor 2 is given by :
a2 nt+i nti n+l2 n+i 9
Fijp = Fi,j,k2 + al(Fi—I?j,k2 - Fi,j,k2 ) + 02(5,]'—21,k2 - ,J, 2 ) (3-4)

nt3 2 n+32 nt3 "+2 nt3 nt3
‘o3(F iy — F %) —rF 8+ Bu(F 5, — 2F 50 + Fiiiz)

+1 +1 + + + +
+B2( zn] Ak 2Fn : 73+21k)+183( n]k21 2Fn 2+ank2+1)

The corrector 2 is given by :

22 ~2 a2

A

Fopy = (1- ’Yz)F iik + 2 (. ]k + al(Fz ik = Fije) T a2(Fi,j—1,k —Fip)
22 22 2 2 2 2
tas(Fyjp1 = Fijrp) — mFije+ Bi(Ficijk — 2Fijk + Fig15k)
+B2(Fijork — 2F ik + Fijyrn) + Bs(Fiju-1 — 2Fi g + Fijra1))
(3.5)
where 7, is again a convex parameter such that 0 < 7, < 1.

In order to compute simpson’s rule, the approximation of functions at the following

3 points has been computed :

13




s ((F ,], Fi',-ll-l,j,k2) " (Fi?j——l,k2 - ﬂ?j+1,k2) " (F{,‘j,k—12 — Fi',lj,k+12)
" 2Az 2Ay 2Az
( i—1,7,k 2F]k+F+ljk)
—HEF e+ v( A2
+(Fi?j—lk 2F) + Flii k) n (F k1 2F]k+F,],k+1))
Ay? Az
(3.6)
n+l n+l nt+i n+ n+ n+
s, = ((F'i—l,zj,k2 - i+1,2j,k2) n (Fi,j—ii,k2 Fiia, k2) (F ik 2 - Fi )
nts 2Az 2Ay 2Az
n+i n+i n+
n+l (Fisihe — 2F ;0 + Fiiiig)
—pF i+ vl )
+3 +3 +3 +3 +3 n+3
+(Fi7,1j—2)1k 2Fn Q + an+21 k) + (Ffj,kz 1 2an; v tF sz-f-l))
Ay2 Az
(3.7)

N ((F?-L—CLM Fz+°1,g,k ) " (F}Z'c—l,kz — Fiv,ljc+1,k2) n (E’ff,k-f - Fi?g?,k+12)

ne 2Azx 2Ay 2Az

uF’an + V( (E" 1], 2F Jck + F:"l*'lrj k)

Az?

+( i,j— 1k_2F]k+F;J+1k)+

Ay?

Then
F'n.+1

4,4k

F]k-i-

Flie 1 —2F7 + Fu,k+1))
Az
(3.8)

At
(sn + 4sn+% + Spe)

This gives the value in the field at the point 4,5,k .

14




4 Stability Analysis

This section is devoted to the stability of numerical algorithm. For simplicity, we are
only analyzing the stability of the three dimensional model using single step predictor-
corrector scheme. The stability of this scheme when applied to one dimensional system
can be found in [1]. The non-linear system is linearized for stability and convergence
analysis using Taylor’s formula. The linearized model can be represented as :

of

S TOVIi=—uf+vVi S (4.1)

where 6 is a constant.
The linear system in (4.1) has to be represented using matrix notations. In order to
achieve that, we define the following set of matrix notations. The field of computation

is three dimensional space is given by,

i=1,2,---NX and j=12,---NY and k=1,2---NZ

The similar analysis can be found in [2] for three dimensional Heat conduction
equation. The author adopted the matrix notations from [2]. Let R be a normed
linear space of dimension (NX)x(NY)x(NZ). Define the following I-order matrices :

(Fjk)i,s = 0is fi ks

(Ir)is = 8ie, (L1) = 6i1,5 and (L7 )iis = Giy1s

where

i=1,2---NX,j=1,2,---NY,k=1,2,---NZ

and 6;, = 1 if i = s and 0 otherwise.

Now let us define the following J-order square matrices with I-order square ma-

trices as elements:

15




(F)js = 04,5 Fjk: (1) = 05,61

(LJ)j,s = 5j,sL1

(Br)js = 8j-1,s11 and (B7)js = 841,611
where j=1,2,---NY,5s=1,2,---NY

Then let us define the following k-order square matrices with J-order matrices as

elements :
(Fk,s = Ok,sFx, (I)k,s = Ok,s01, (L)g,s = Sk 5Ly,
(B)k,s = Ok,

(H)k,s = (Sk,sf so that (HT)k7s = 6k+1’sI
where k =1,2.--NZ,s=1,2,---NZ.

Now assume that the boundary conditions are all zero. Then the finite difference

formula for the predictor of (4.1) can be represented as :

[Flis =01 + B)LF"LT) + (az + B2)(BF"BT) + (a5 + Bs)(HF"HT)  (4.2)
+(1 = —ay—o3 —r—20; — 26, — 23) F"

+B1(LTF"L) + B(BTF"B) + B3(H"F"H))x.

where a;, 7, B; , 1 =1,2,3 are given as :

OAtL AL OAtL vAt
A_x’azzA_y’ = Az’ , T = pAt, B = 27182 2,,33 2

Now let us define the following Ix1 order square matrix:

a1 =

(F]?:k) =F'n

P =121

and let us define the following Jx1 column matrices using Ix1 matrices as the

elements:

(Fx)j =Fjx,5=12---J

16
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and define the following K order column matrices with J order column matrices

as elements:

(F) = F,k=1,2,---K
Using these column matrices (4.2) reduces to
F=AF (4.3)
where
A = (a1 —+ ,B1)L + (0’2 + ,BQ)B + (a3 + ,BB)H
+(1-—a1—a2—a3—r—251—2ﬂ2~263)l
+ﬁ1LT + ﬂQBT -+ ,83HT.
The matrix A can be represented as A = I + C where [ is the identity matrix and
C = (0!1 + Bl)L + (012 + ,Bz)B + (a3 + ﬁs)H
+(1—a1—ag——a3—r—2ﬂ1—2,32—2ﬁ3)l

+B.LT + B, BT + B HT.
Similarly the corrector can be represented as:

FHl=TF"4+1.F-T-F+TC-F
where ' = diag(0, vy, 0). This, by simplification yields
F"l = (I1+C+TC*F" (4.4)

Let M = (I + C +I'C?). Then, if we denote the eigenvalues of C by A°, then the

eigenvalues of M will be

MM = (14 X° +9(2\°)). (4.5)
For stability, we need,
1AM < 1 (4.6)
17




which gives us

“1< (@42 +72%%) < L. (4.7)
Our aim is to optimize AM with respect to ~. Since (4.5) is linear with v, the stability
condition is achieved if (4.7) is satisfied. By simplification of (4.7), we get

(2 + X9) 1
_—)\CT <7< —5"5 (48)

Let us discuss the bound on v we got in (4.8). Clearly, if A® > 0, we can’t get
O<y<l.

From appendix A, and from [4] we can find out for three dimensional case,

/\C = 2(\/ ((11 + ,31),31 COS ¢1 + \/ ((12 —+ ,Bz)ﬁz COS (152 + \/ (013 + ﬁg)ﬁg [o{0 ] ({)3) (49)

—(01 + a2+ a3+ 7+ 261 + 26, + 264).

Here all the o;s, Bis, i = 1,2,3 and r are positive. Then , to minimize, we choose
cos ¢y = coS ¢ = cos 3 = —1

Then (4.9) becomes

X = 201 + B1)B1 + /(2 + B2) B + /(3 + B5) i) (4.10)
—(a1+ ag+ a3 + 1+ 26 + 262 + 2B1).

Computational experiment showed us that the range of v when XC as given by (4.10)
is within the limit 0 < v < 1. In fact, numerical calculation showed that for a choice
oft=.001, Az =Ay=Az=.02, NX = NY = NZ =50, p = 2.0, v =.00001 and

for 8 = .005, - - -4, v could be any value within 0 to 1.

18




5 Truncation Error

In this section the truncation error due to explicit finite difference approximation is

analyzed. The truncation error caused due to the approximation of the time derivative

of ]" 1 n
= == L))kt B (5.1)
[at .Y ok
Also by definition of forward difference operator,
ofl” 2 3
At B =[ln(I+At)fl= (At — A + AL — - ) f. (5.2)
igk

Comparing (5.1) and (5.2), and approximating the Taylor’s series for logarithm to

the first term, we get,
AtEy = Atf'(t) — [f(t + At) = f(2)]

which gives

A
ALE, = At7(0) — [£ (1) + Atf'(0) + S 1(0) + -+
where ¢ < t; < t + At. This gives, by simplification,
At
Et = —-éTf”(tl). (53)

So the error due to approximation of time derivative is of O(At).
The truncation error in the space derivative in the convection component along x
direction is given by:
of]" Vs’
AT =t - gl = 0+ %

Lk

+ - )ik

which , upon approximation to the first term of the Taylor’s series gives us

of1" 1 n
[%] = E[vz‘f]i,j,k + By

igk
This gives
E, = f'(z) — [f(z) - f(z — Az)].

19
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2
The Taylor series expansion of f(z—Az) is f(z—Azx) = [f(z:)—-Aa:f’(:v)+%T—f"(:c1)+

- -] which upon application to the last equation and subsequent simplification yields

of
E, = - [83;] (5.4)
7.7’
Thus the error is O(Az).Smililarly we can find,
Ay [8f]"
E,=— |+ .
2 [0y (5.5)
and
Az [of]"
E,=— |+ 5.6
20 10z], (5.6)

The error in space derivative along x-axis in the diffusion componet is given by :

azf " _ 1 61.3 5 3
[ﬁ]u,k = 2l g )0 )

Upon approximation to the first term of the series, we get

" = Lt - A0 2f(@) + flz + )] + B
0z ik A Az? -

Approximating f(z — Az) and f(z + Az) by it’s Taylor series expansion and subse-
quent simplification yields
Az?

Eee ==

(7). (5.7)

Thus the truncation error is of order O(Az?). Similarly the truncation error along
y-axis and z-axis could be found as O(Ay?) and O(Az?). Then we can find the total
truncation error as :

Eiotar = Differential equation - Difference Equation,

which gives,
Etotal = [ft + ffa: + ffy + ffz - Vfa:x - nyy - szz]

—[(fs — Bo) + f(fo — Ez) + f(fy — By) + f(f: — E2)
~V(fae = Eze) — V(fyy — Byy) —v(f2z — E..)]

20




which gives
Eita = [Es+ fEz + fE, + fE, — VEy — vEy — VE,,] (5.8)

Since E; ~ O(t),E, = O(Az), E, = O(Ay) ,E, = O(Az), Egz = 0(Az?), Eyy ~

O(Ay?), E,, ~ O(A2?), the system of equations is first order accurate.




6 Discussions

In this section, we are going to discuss in detail, the computational aspect of the
model. We have used two different set of boundary and initial conditions and solved
the model numerically. First, we have considered free boundary([7]. The assumption
is that dispersion of all the biochemicals can take place through both the boundaries
i=0,j=0k=0andi=NX+1,j=NY +1,k=NZ+1 in three dimensional
solution space. It is already stated that human body is three dimensional and if we
consider a part of the human body within a three dimensional block, body fluids are
constantly flowing in and out of that part. The free boundary assumption is based
upon that consideration. If U represents biochemicals then, applying extrapolation,

the boundary conditions are given by
UO,j,k = 25 U1,j,k —0.5- Uz,j,k +0.5- U3,j,k;

Uog = 2.5-Ui1p =05 -Uigxr +0.5- Uiz
Uijo = 25-Uij1 —0.5-Usj2+0.5-Uijs;
Also
Unvxtije = 2.5-Unxjk—05-Unvx_156+0.5 - Unx—2,k
Uinv+ie = 2.5 -Uinyg —0.5-Usny_1x + 0.5 - Ui ny—2k;
Uijnz+1r = 2.5-Uijnz —0.5-Ujnz—1+0.5-Ujnz-2;
The tumor is assumed to be present in the region close to the point i = 0,5 = 0,k = 0.
Our assumption is that f is a flux of biomass which is changing(growing/decaying) at
a very slow rate. A large value of f implies that the angiogenesis have developed, i.e.,
blood vessels have been created from the tumor to the nearby primary blood vessels
and the extra supply of oxygen, food and nutrients reaching the tumor. We have

assumed that the flux f starts from a very small value and that’s why we have set the

initial flux f = .005 over the entire space in the beginning of the computation. The
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value of v, the rate of dispersion has been chosen v = .00001. This choice is made
based on the information in [8]. The solution space has been taken to be equal to
50x50x50(i.e. NX = NY = NZ = 50) and Az = Ay = Az = 0.02. Also At = .001
we solved the model for 1000 steps so that the time goes from 0 to 1. Note that,
this is purely logical timesteps. We are yet to correlate this with any actual time
period. The numerical results for the model is studied for p = 1.5,2.0,3.0. Note
that p is a conceptual mathematical drug and so the rate of growth/decay of the
Qux is studied for different values of p. The idea is that the values of p might give
the inkling of the dose of some real world medication suitable to control the growth
of angiogenesis. We found that for mu = 1.5 angiogenesis could not be stopped at
all[Figure 2]. For mu = 2.0 f first decreases and then increases. This is a very
interesting situation. With longer simulation, it has been found that f eventually
grows. So , angiogenesis could be deceiving[Figure 3]. For mu = 2.5, f decreases
steadily[Figure 4]. In another execution,we initialized a larger f near the tumor and
smaller elsewhere, with the assumption that f could be more neat the tumor. But
we got almost the same result as earlier for mu = 1.5,2.0[Figure 5 and 6].

The numerical solution of the model is also studied for a smaller field size (NX =
NY = NZ = 25 and subsequently Az = Ay = Az = 0.04. It has been found
that, depending on the values of the parameters, if the flux is in a growth phase,
larger field size produces faster growth. This is not a biological phenomena, rather
a computational one. Larger solution space gives larger condition number for the
system of equations. We did the linearized stability analysis, using 6 as a constant.
Since, we are actually solving nonlinear equations, we can think of theta as a variable,
varying in each step. By computation, it is found that the condition number of the
system of equations in one dimension for 8 = 2 is nearly 65 for larger field(NX =
NY = NZ = 50), and 33.3 for smaller field( NX = NY = NZ = 25). The condition

number is much smaller for smaller values of §(for = 0.1, the condition number for
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the large field is 6 and for smaller field, it is 3.5). This shows us that with a larger

field and with increase in 6 (flux f), the system of equations becomes moderately
stiff.

In case of closed boundary, the tumor is assumed to be present in the middle of the
field. The flux at the boundary i =0,j=0,k=0andi=NX+1,j=NY + 1, k=
NZ +1 are all 0. The flux, f is set to .005 in the middle of the field and smaller
towards to the boundary. The computation is done with the same set of parameters
as in the free boundary case. It is found out that in this case, the flux is decaying
faster than that of free boundary case. Intuitively, this implies that if the flow of the
biomass could be stopped throughout the boundary, the flux of malignant cell will
starve and decay[Figure 7]. This is evident, since with the decay of supply of oxygen,

nutrients and food, the tumor will die eventually and angiogenesis will be inhibited.




7 Parallelization of the code

Since the code for this problem involves extensive numeric computation, the numerical
code has been implemented to run in parallel cluster for faster execution. We've
used MPI platform in a distributed memory cluster for this purpose. The cluster
implementation is done using same technique as in [4]. Our total field of computation
consists of NXxNYxNZ points. This complete field has been split along the x-axis,
depending on the number of processors being used for the execution of the code.
After the execution of each step, the ghost planes in the boundary are exchanged
among the neighboring processors to ensure consistency of data in each processor.
This is achieved with a minimum number of send-receive calls( i.e., by buffering
the data and sending the complete plane in one call.), to ensure that the cost of
send-receive calls doesn’t render the parallel implementation undesirable. At the
receiving end, this large buffer is decoded and remapped into the respective points.
This particular parallelization technique was developed by [9]. This method helps to
convert nonparallel codes to parallel codes with minimum changes. Also maintaining
the parallel code is easier. The parallel code is ru using 8 processors on a space of
NX = NY = NZ = 50. It has been found that the result of the parallel code

matches completely with serial code.
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A Appendix

A.1 Stability in one dimension

In one dimension the linearized model is :

of .0 o?
‘8‘£+0%~—Hf+1/@ Al

Then the finite difference formula for the predictor could be written as :
Fhi = oy (FlLy — Fly) — uEP + B(F™y — 2FP + FL,) A2
The finite difference formula for the convex corrector is given by :
Frtt = (1=y)Fhi+y(F!+a (Fhi_l—Fh,~+1)—thi+ﬂ1(Fhi_1—2Fh,-+Fh,~+1)) A3
In matrix-vector notation (A.2) can be written as :
FHAT = (I1+C)F" Ad
where I is identity matrix and
C = diag(b, a,d)

is a tridiagonal matrix[3). Here

b=a; + 5
and
a=(—a;—r— )
and
d=/31

Here FHAT = [Fh;),i = 1,2,---NX and F™ = [F,i = 1,2,---NX are column
vectors.

The equation (A.3) can be simplified as :
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F?-H = ’)’F;n-f-Fh, —7Fhi+fy(a1 +,81)Fh,'_1 +’)’(—-C¥1 —7'—2,81)Fhi +ﬁ1Fhi+1(A.5)

which, in matrix form could be written as
F""'=TF"+ I FH —TFH +~C.FH (A.6)

where
I' = diag(0,, 0)

and I is identity matrix. Both I' and I are of order NX.

Using (A.4) to replace FH at (A.6) we get
FMl=TF"+ I(I+C)F" —T(I + C)F" + yC(I + C)F™

or
F™! = (I 4+ C 4 ~C?)F" (A7)
If we assume

M = (I+C+~C?
then the convergence of the solution is achieved when
M| <1 (A.8)
The condition (A.8) is satisfied if the matrix M is convergent, i.e.,
1< MM <1

where AM,i = 1,2,--- NX are the eigenvalues of M. But how the eigenvalues of M

looks like? To answer this question, we need the following lemma, :

Lemma 1 If X is an eigenvalue of a N dimensional square matriz A , then \? is the

eigenvalue of the matriz A2.

Let X be an eigenvalue of A and v be the correcponding eigenvector of the NV

dimensional square matrix A. Then

Av =l
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by the definition of eigenvalues and eigenvectors of a square matrix. If we multiply

both side of the equation by matrix A, we get,
AAv = Al

or

A%y = \Auw,

since A is a scalar. Then we get,
A%y = A(A)v = N,

So the eigenvalue of A2 is \? .
The dimension of I is same as that of C and so the eigenvectors of I can be taken
same as that of C.

Before proceeding further, we need the following lemma:

Lemma 2 IfQ = diag(p, q,7) is a tri-diagonal matriz of order N then the eigenvalues
of Q are given by
nam

.= 2 —_.
Ai = g+ 2,/prcos N+ D)

Let V =[w]7,i=1,2,--- N be the eigenvectors of Q. Now from the definition of

Q, we get,
PU—1 + qui + TV = Ay (A.9)
where we are considering the jth eigenvalue. Letv; = ¢°. Then (A.9) can be written

as
PETH g€ 4 rEH = )¢
which implies
p+(g—N)E+rE =0. (A.10)

Solving (A.10) for ¢ yields

(A —g) £ /(N — g)2 —4pr

£= %

(A.11)
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N ———

Let ()"T;p) = \/g cos ¢. Then (A.11) becomes

€=, [ exid

which gives

Aj=q+2\/prcosg,j=1,2,---N (A.12)

By definition, v; = r &7 + ol considering two different values of £&. Then

-

v; = (\/g)j(rlew + roe” %)
from which we get, by simplification
v = (;)%(ﬁcosj¢+3sinj¢). (A.13)

Taking zero boundary into account we get :

nm

¢=“

(J+1)

By substitution of this result to (A.12), we get

Aj =¢q+ /prcos (A.14)

(J+1)
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Figure 2: mu=1.5,free boundary
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Figure 3: mu=2.0,free boundary
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Figure 4: mu=2.5,free boundary
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Figure 5: mu=1.5,free boundary with initial Alux larger near the tumor
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Figure 6: mu=2.0,free boundary with initial flux larger near the tumor
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Figure 7: mu=2.5,closed boundary
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