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ABSTRACT

Exposure of insect cells to subzero temperatures typically leads to cell membrane
disruption and lethal intracellular ice formation. This study seeks to examine the
cryoprotective value of trangenically expressing a bacterial ice nucleation protein (INP)
in Spodoptera frugiperda (Sf-21) cells. The bacterium Pseudomonas syringae naturally
produces a membrane-bound INP (inaZ), capable of structuring water and initiating ice
formation at temperatures as high as -2 °C. | hypothesized that intracellular expression of
an altered form of inaZ (PsINP) in Sf-21 cells will mediate highly regulated ice
nucleation when cells are cooled to -80 °C in a slow, controlled manner, and that cells
expressing PsINP (Sf-21-PsINP) will maintain cell membrane integrity in greater
proportions than wildtype cells (Sf-21-WT). Following one freeze-thaw cycle, 60% of
Sf-21-WT cell membranes remained intact, while 72% of Sf-21-PsINP cells maintained
membrane integrity. This difference is statistically significant, and suggests that PSINP
expression helps to prevent cryoinjury during freezing, and positively impacts cell

viability following thawing.
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INTRODUCTION

Under certain conditions some bacteria synthesize specific proteins that serve as
nucleation centers for ice crystals (Gurian-Sherman and Lindow, 1993). These
microorganisms present ice nucleation proteins (INPs) on the cell surface and efficiently
catalyze ice formation at temperatures as warm as -2 °C (Gurian-Sherman and Lindow,
1993). First identified and isolated by Wolber et al. the product of the highly repetitive
gene sequence inaZ is a membrane-bound protein (PSINP) expressed by the bacterium
Pseudomonas syringae; this protein provides a molecular foundation for the structuring
of water molecules (Wolber et al., 1986). A virtually ubiquitous epiphytic pathogen, P.
syringae induces frost damage in sensitive plant tissues at temperatures around -5 °C.
Two main hypotheses about the functions of INPs have been postulated: a) to grant the
bacterium access to nutrients in plant tissue and b) to provide a means of dispersal via the
water cycle (Lindow et al., 1982; Morris et al., 2007; Morris et al., 2008). Furthermore,
increasing proficiency of a particular strain at encouraging ice formation directly
correlates to amplified virulence (Morris et al., 2010). Commercially important aspects
include ski resorts’ use of the protein, manufactured under the label SnoMax® (York
International, Victor, NY) to initiate snow (ice) crystallization at warmer temperatures;
PsSINP has also been examined as a candidate for cloud seeding applications as a
mechanism of drought relief (Battan, 1969; Morris et al., 2004).

The ability of PsINP to initiate ice nucleation at -2 °C seems unremarkable, as
water is traditionally assumed to freeze at 0 °C. However, a sample of pure water may be
supercooled to below -40 °C before homogeneous nucleation is observed (Li et al., 2011).

Homogeneous nucleation refers to the formation of ice simply by the aggregation of only



water molecules. When an aqueous solution contains some foreign solutes about which
water molecules may accumulate (an INP, for example), the potential for heterogeneous
nucleation exists. Any ice ‘embryo’, consisting of a foreign particle surrounded by water
molecules, has a conditional critical size. This size must be reached in order for ice
crystal growth to continue; below this critical mass, the embryo will disintegrate. At this
critical mass, two opposing forces are in equilibrium: (1) any mass increase correlates to
an increase in free energy (AG) which energetically favors shrinkage of the ice crystal,
versus the (2) reduction of the surface free energy (AGg) which is decreased when the
embryo grows and the volume to surface area ratio increases (Mazur, 2010). In its
capacity as a heterogeneous nucleator, PSINP exceeds this critical mass on its own,
bypassing the normal physical restraints applied to small ice embryos.

To date, the tertiary structure of an INP has yet to be experimentally determined,
and therefore, the mechanism by which ice formation is induced is poorly understood.
Fortunately, advances in protein sequencing and computational modeling techniques may
be combined to shed light on the mechanism by which INPs function at the molecular
level. A second class of proteins that impacts crystallization of water is comprised of
antifreeze proteins (AFPs). AFPs were first discovered in Antarctic fish over 40 years
ago and have been identified in several organisms inhabiting environments with
persistent subzero temperatures including bacteria, fungi, algae, plants, and arthropods.
The molecular mechanisms by which AFPs inhibit ice-formation have been well
characterized (DeVries et al., 1969; Gilbert et al., 2004; Hoshino et al., 2003; Janech et
al., 2006; Fei et al., 2008; Hawes et al., 2011). Based on their antithetical functions, INPs

and AFPs were not expected to be highly similar. However, these two groups of proteins



share a highly conserved, repetitive TXT amino acid motif (threonine followed by any
inward pointing amino acid, then another threonine residue) that has been shown to play
a crucial role in conferring ice-binding ability (Graether et al., 2000). Figure 1 illustrates
threonyl oxygens of an AFP (from the beetle Tenebrio molitor) interacting with an
aqueous solvent. These oxygen atoms may mimic the structure of oxygens in an ice

crystal lattice, encouraging the binding of water molecules (Liou et al., 2000).

threonyl oxygen atom

oxygen of bound water molecule

Figure 1. Association of threonyl oxygen atoms of an AFP in aqueous solution with
oxygen atoms (outlined in red) of water molecules (adapted from Liou et al., 2000).

It is still poorly understood what specific properties of INPs and AFPs contribute
to their highly dissimilar biological functions, given their highly similar associations with
water molecules. It has been suggested that the difference in the sheer mass of proteins
may be responsible. INPs tend to be at least 10 times larger than AFPs, which could be a
reflection of a minimum size requirement for an ice-forming surface with effective

nucleation properties. Large INPs provide large surfaces that serve as a foundation for



crystallization, whereas the binding sites of relatively smaller AFPs shield ice nuclei from
further aggregation (Graether, 2001). While this seems plausible, the exact source of this
phenomenon deserves further investigation.

Intracellular ice formation (I1F) is generally thought to be a lethal event, but the
sources of cellular damage associated with IIF are uncertain. There are two popular
hypotheses concerning the initiation of IIF: (1) extracellular ice simply propagates
through preexisting pores in the cell membrane, initiating 1IF, and (2) extracellular ice
formation (EIF) is responsible for conformational changes in the structure of the cell
membrane, rendering it an effective heterogeneous nucleator for intracellular ice (Mazur
et al., 2005; Toner et al. 1993). Independent of the actual mechanism, EIF occurs prior to
IIF. As the extracellular medium freezes, the concentration of solutes in the unfrozen
portion increases, promoting osmotically driven water flow from within the cell, and the
maximum rate of this flow is set by the water permeability of the cell membrane (Mazur,
1963). This basic principle explains the impact of different cooling rates on cell
membrane integrity during a freeze-thaw cycle. At very low cooling rates, intracellular
water is able to flow out of the cell before IIF occurs, and at very high cooling rates, 1IF
is complete before any water traverses the cell membrane. Dumont et al. found that
samples frozen at rates of 5 °C/min and 30,000 °C/min maintained significantly higher
proportions of cells with intact membranes than samples frozen at 180, 250, and 5,000
°C/min (Dumont et al., 2004).

Additionally, studies conducted with the industrial product SnoMax® indicate
that the protein, when present in extracellular medium, reduces the chaotic distribution of

nucleation in solution and increases cell survival when present at sufficiently high



concentrations (Missous et al., 2007). | hypothesized that intracellular expression of a
water-structuring protein, such as PSINP, in combination with a low, highly controlled
cooling rate (-1 °C « min™®) will allow for the orderly organization of water molecules

during cell freezing, and membrane integrity will be maintained following thawing.



MATERIALS AND METHODS
Sf-21 Cell Maintenance

Sf-21 (Spodoptera frugiperda) cells (Invitrogen Corporation, Carlsbad, CA) were
cultured in 75 cm? cell culture flasks with Sf-900 111 media (Invitrogen Corporation,
Carlsbad, CA) at 26.5 °C in air. Penicillin (50 U/ml), streptomycin (50 g/ml), and
amphotericin B (12.5 pg/ml) (MP Biomedicals, Solon, OH) were added to the Sf-900 111
media. Cells were grown to a density of 20 « 10° cells/flask and sub-cultured to 1 « 10°

cells per flask weekly.
Subcloning of the PSINP gene

A nucleotide sequence encoding for the central motif of INP from Pseudomonas
syringae was synthesized (Gene Oracle, Mountain View, CA) and cloned into the
PENTR/D-TOPO cloning vector (Invitrogen, Grand Islands, NY) following the protocol
provided by the manufacturer. The PSINP sequence was subcloned into the p1B/V-5-
HIS-DEST vector for insect cell expression using clonase technology (Invitrogen, Grand

Islands, NY).
Transfection of Sf-21 cells

3 million Sf-21 cells were plated in 60 mm dishes at 1.5 « 10° cells/ml in a total
volume of 2 ml of Graces insect medium (Invitrogen Corporation, Carlsbad, CA). Cells
were transfected using Lipofectamin according to the instructions of the supplier

(Invitrogen Corporation, Carlsbad, CA). Stable insertion of the transgene was selected



for by exposing cells to 75 pg/ml of blasticidin for one month (Sf-21-PsINP). After one

month, cultures were maintained in 12.5 pg/ml blasticidin (MP Biomedicals, Solon, OH).
Buffer composition

The buffer solution used in each of the following two assays was originally
developed as a cell desiccation buffer, designed to increase tolerance of cells to water
stress (buffer A). The buffer contains no conventional cryoprotective agents, but is
comprised of: 40 ml 0.5 M potassium lactobionate solution per 250 ml buffer solution
(35.83 g/200 ml H,0O, pH adjusted to ~7.0 with KOH), MgCl « 6 H,0 (3 mM), taurine (20
mM), HEPES (20 mM), KH,PO,4 (10 mM), bovine serum albumin (BSA, .25 g/250 ml),

and trehalose (200 mM). The pH of the solution was adjusted to 6.8-7.0 with KOH.
Cell incubation assay

Sf-21-PsINP and Sf-21-WT cells were centrifuged at 3,000 g for 5 minutes,
washed with phosphate buffered saline (PBS), centrifuged again, and resuspended to a
final density of approximately 1 « 10° cells/ml in buffer A. The cells were then incubated
in a water bath at 27 °C for 4 h. A 20 pl sample was withdrawn each hour for cell

membrane integrity assessment via trypan blue exclusion assay.
Freeze-thaw assay

Cells were prepared in the same way as described above in buffer A. The
resulting cell suspension was aliquoted in 1.0 ml samples into 2.0 ml cryovials (Fisher
Scientific, Waltham, MA). Samples were frozen at a controlled rate of -1 °C « min™

using isopropanol in a Nalgene freezing container (Fisher Scientific, Waltham, MA).



Samples remained frozen for at least 24 h at -80 °C, and were rapidly thawed (< 120
seconds) in a 27 °C water bath. Cell membrane integrity was immediately evaluated,

again using the trypan blue exclusion assay.
Western Blotting

Sf-21-PsINP cells were washed with 1X PBS and aspirated. Cells were lysed
using 100 ul 1X sodium dodecyl sulfate (SDS) sample buffer per sample and transferred
to microcentrifuge tubes, containing 1 * 10°, 2.5 » 10° and 4.5 « 10° cells. Each cell
sample was sonicated for 20 seconds. A 20 ul portion of each sample was then heated to
95 °C for 5 minutes, and loaded onto an SDS polyacrylamide gel (SDS-PAGE gel). A 10
ul quantity of Precision Plus Protein Dual Color Standard (Bio-Rad, Hercules, CA) was
loaded into the first lane of the gel. The gel was allowed to run for 30 minutes at 200 V,
and proteins were transferred to a nitrocellulose membrane, using a 100 V current for 30
minutes. The membrane was incubated in 25 ml blocking buffer (1X tris-buffered saline
(TBS), 0.1% Tween-20, 5% nonfat dry milk) for one hour at room temperature, then
subjected to 3 5-minute washes with 15 ml 1X TBS and 0.1% Tween-20 (TBS/T) each.
A 1:1000 primary antibody dilution buffer was prepared, comprised of 1X TBS/T, 5%
BSA, and 10 pl primary His-tag rabbit antibody (Cell Signaling Technology, Danvers,
MA), and the membrane was incubated in this solution on a rocking platform at 4 °C
overnight. Following this incubation, the membrane was washed with 15 ml TBS/T for 5
minutes, 3 times. A 1:2000 secondary antibody solution, consisting of 10 ml blocking
buffer and 5 pul secondary anti-rabbit 1gG antibody (Cell Signaling Technology, Danvers,
MA), was applied to the membrane, and incubated on a rocking platform at room

temperature for one hour. After 3 5-minute washes with 15 ml TBS/T, proteins were
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visualized using a 4-chloro-1-naphthol/3,3'-diaminobenzidine tetrahydrochloride

(CN/DAB) substrate kit (Fisher Scientific, Waltham, MA).

Protein modeling

The nucleotide sequence transfected into Sf-21 cells was submitted for
computational modeling to the I-TASSER server (Ambrish R et al., 2010; Zhang Y

2008).

Statistical analysis

Results were analyzed using Sigma Plot 11 software. Statistical analyses
(ANOVA and student’s t-test) were performed on the results, which are reported as mean

+ standard error.



RESULTS

To investigate the question of whether intracellular expression of the water-
structuring protein PsSINP reduces cryogenic injury during cell freezing, the impact of the
used freezing buffer (buffer A) on cell viability before the onset of freezing was
evaluated. Since transgenic and control cells are exposed to buffer A—which is
hyperosmotic and mimics the intracellular ion composition—during freezing, cell
membrane integrity was assessed in Sf-21-WT and Sf-21-PsINP cells suspended in
buffer A for up to 4 h. Cell membrane integrity declined in a time-dependent manner for
Sf-21 and transgenic PsINP-expressing cells (Sf-21-PsINP) incubated at 27 °C. Viability
of the two different cell types differed significantly at 1 h and 2 h (n = 6, p < 0.050).
After 4 h, the proportion of Sf-21-WT cells retaining membrane integrity was 0.42, and
for Sf-21-PsINP cells, this proportion was 0.43. With the exception of Sf-21-WT at t(1),
all data points significantly differ from t(0) (Fig. 2).

1.1
% #
1.0
—e— Sf-21-WT

0.9 ~ A - Sf-21-PsINP

0.8 ~

0.7 ~

0.6 +

0.5 ~

Cell Membrane Integrity

0.4

0.3 . . . |
0 1 2 3 4
Time. h
Figure 2. Proportions of cells retaining cell membrane integrity, assessed hourly, for
Sf-21-WT and Sf-21-PsINP cells incubated in buffer A at 27 °C for4 h (n=6, p >
0.050). * denotes statistical significance, relative to t(0). * denotes statistical
significance between cell types at a given time point. 10



After assessing the effect of hyperosmotic stress exerted by buffer A on the two
cells types and observing no significant difference between both cell types, a freeze-thaw
assay was conducted to investigate the impact of freezing on SF-21-WT and Sf-21-PsINP
cell membrane integrity. A significant difference in the amount of cells with intact cell
membranes was observed between the two cell types following the freeze-thaw assay (n
= 6, p < 0.050). Sf-21-WT cells retained 60.06% + 3.25% membrane integrity, while

71.62% * 3.41% of Sf-21-PsINP cell membranes remained intact (Fig. 3).

0.8 -

0.6 -

0.5

0.3 -

Cell Membrane Integrity

Sf-21-WT Sf-21-PsINP
Cell Type

Figure 3. Proportions of Sf-21-WT and Sf-21-PsINP cells retaining membrane
integrity following one freeze-thaw cycle (n = 6, p < 0.050). * denotes statistical
significance.
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In order to confirm expression of PSINP, Sf-21-PsINP cells were characterized
using western blotting techniques. Following this procedure, bands were observed at
masses of 77 kD, 90 kD, and 97 kD for samples of 10°, 2.5 « 10°, and 4.5 « 10° cells,

respectively (Fig. 4).

250 KD e—
150 KD e

100 KD s

5

75 KD s

Figure 4. Western blot characterization of protein extracted from Sf-21-PsINP cells.
Lanes, from left to right, contained: Precision Plus Protein Dual Color Standard,
10° 2.5+ 10°% and 4.5 « 10° cells
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To investigate the three dimensional structure of PsSINP, an in silico approach was
taken. The PsINP protein model generated on the I-TASSER server is a B-helical
structure with a highly repetitive motive sequence (Fig. 5) (Ambrish R et al., 2010;
Zhang Y 2008). A confidence score (C-score) is assigned to each model produced,
within the range of [-5, 2]; increasing C-score corresponds to increasing model
confidence. This score is used to determine a template modeling score (TM-score). TM-
scores indicate structural similarity between two protein structures, and usually compare
some predicted model to a known native structure. Because the exact structure of PSINP
is unknown, an algorithm is used to approximate the TM-score based on known
correlations between C-scores and TM-scores. A TM-score > 0.5 indicates a model of
correct topology. For the PSINP model, the C-score was determined to be -1.60, and the
experimental TM-score was 0.52. These values support a high degree of reliability for

the generated PSINP model.

Figure 5. Predicted B-helical tertiary structure of PSINP, generated on the I-TASSER
server.
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DISCUSSION

The overall goal of this study was to investigate whether the highly repetitive, -
helical, and water-structuring protein PSINP can increase the viability of PsINP-
expressing cells following a freeze-thaw cycle. A direct link must be established between
PsSINP expression and an increase in maintained cell membrane integrity for this
hypothesis to be supported. Therefore, it is crucial to ensure that the intracellular
presence of PsINP is the only variable contributing to proportions of viable cells
observed after freezing and thawing.

The cell incubation assay examined the impact of buffer A—a hyperosmotic
environment (~430 mOsM)—on cell membrane integrity, and whether this impact was
dependent upon the cell type. Cell membrane integrity was maintained in significntly
lower proportions in Sf-21-PsINP cells at 1h and 2h, establishing that PSINP expression
does not positively affect cellular responses to the freezing medium prior to ice-
nucleation. Therefore, any difference between Sf-21-WT and Sf-21-PsINP cells in
retained membrane integrity following a freeze-thaw cycle can be directly attributed to
the expression of PSINP. It should be noted that Sf-21-PsINP cells are significantly and
negatively impacted by a hyperosmotic environment for the first 2 h, relative to Sf-21-
WT cells. This difference may be driven by the function of PSINP as a water-structuring
protein; free water molecules within the cell are expected to be bound by PSINP to a
minimal degree at temperatures above the ice nucleation temperature. This effect may
exaggerate the impact of hyperosmotic extracellular conditions.

This data also provides an estimate of how much the cell membrane integrity may

be expected to decline before the samples completely freeze. Prior to freezing, samples
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were suspended in buffer A at room temperature (~21 °C) and then cooled to -80 °C at a
rate of -1 °C » min™. The 1.0 ml samples will therefore be completely frozen within one
hour, and at this time point, at least ~85% of cell membranes remains intact (the lower
value at 1 h was 84.95% + 3.64% for Sf-21-PsINP cells). For PsINP cells at 1 h, this is a
significant decrease, and this may be considered an maximum projection for cell
membrane integrity following a freeze-thaw cycle. As 28.38% of Sf-21-PsINP cells lost
membrane integrity following complete freezing and thawing, ~50% of this loss is due to
hyperosmotic stress and the remaining ~50% is the result of cryoinjury.

The expression of PsINP significantly increases the proportion of cells with intact
membranes. This may be due to the repetitive TXT motif, common to all INPs, found
within PsINP. In order to determine the exact role these repeats play in conferring
cryoprotection to Sf-21-PsINP cells, an additional line of Sf-21 cells could be developed
which expresses variant forms of the PSINP gene. Graether et al. carried out a similar
study, examining the function of the TXT motif in a spruce budworm AFP by replacing
specific threonine residues with leucine (Graether et al., 2000). Substituting leucine
molecules (a hydrophobic amino acid) for threonine residues (with a polar neutral side
chain) within TXT repeats would allow the proposed influence of threonyl oxygens on
the ice nucleation activity of the total protein to be quantified. Cells expressing this
modified form of PsINP would be expected to maintain lower proportions of cell
membrane integrity. Additionally, solutions of PsINP and its altered counterpart
dissolved in buffer A should have significantly different freezing points, with PSINP
increasing the freezing point of the solution more effectively than the leucine containing

protein.
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The predicted molecular weight of PsINP is 26.99 kD, much smaller than the
observed Western Blot bands. However, other INPs produced by P. syringae are known
to aggregate during processing for Western Blotting (Ruggles et al., 1993). The greater
the size of an ice nucleator, the higher the nucleation temperature. This effect becomes
exaggerated at increasing temperatures; as the nucleation temperature approaches 0 °C,
greater nucleator mass is required to affect diminishing increases in nucleation
temperature (Burke and Lindow, 1990). The tendency of INPs to form aggregates
capable of inciting ice nucleation at elevated temperatures may explain the protein bands
with higher than anticipated masses.

The computational model of PSINP is consistent with other models of INPs and
AFPs as B-helical structures (Graether et al., 2000; Liou et al., 2000; Graether et al.,
2001; Garnham et al., 2011). The reliability of the predicted structure supports the
hypothesis that B-sheets within the protein serve as planar surfaces at which water

molecules may interact with threonyl oxygens and initiate homogeneous nucleation.
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CONCLUSIONS
The major conclusions of this study may be summarized as follows:

(1) Expression of the protein PSINP provided no advantage to cells exposed to a
hyperosmotic and intracellular-like environment; in fact, Sf-21-PsINP cells were
significantly negatively impacted by these conditions (relative to Sf-21-WT cells)
for the first 2 h of incubation.

(2) Sf-21-PsINP cells maintained cell membrane integrity in significantly greater
proportions than Sf-21-WT cells, and this difference can be directly attributed to
PSINP expression.

(3) Western Blot characterization confirms the transgenic expression of PSINP and also
illustrates the tendency of INPs to aggregate.

(4) The computational model generated on the I-TASSER server is consistent with other
published models of INPs and AFPs, and with the hypothesis that threonyl residues

located in B-sheet regions mediate the initiation of ice nucleation.
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APPENDIX A
This research was included in a presentation at the annual meeting of the

Biomedical Engineering Society (BMES) in Atlanta, GA, October 24-27, 2012 (see next

page).
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