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ABSTRACT 

 Roadways negatively affect their surrounding ecosystems through the contamination of 

air, water, and soil resources, the dissection of populations and habitat areas, and the direct 

mortality of several fauna. My study assessed the significance of a number of variables that 

might influence the temporal and spatial patterns of road mortality in a population of Midland 

Brownsnakes (Storeria dekayi wrightorum). I utilized passive sampling techniques and road-

walking surveys to collect individual snakes from a road during their biannual migrations from 

lowland activity areas to upland forests where they hibernate. I discovered that sexually biased 

behavioral and natural history traits impacted an individual’s survivorship. Using a GIS, I was 

able to locate clusters of snake movement where individuals are drawn to cross in association 

with certain habitat types, topographic cues, or possibly even the scent trails made by other 

migrating snakes. Overall, this population may require the construction of below-grade 

ecopassages in order to mitigate mortality.    
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INTRODUCTION 

 In recent decades, road ecology has been identified as a research frontier with the 

potential to impact a number of ecological subdisciplines. As a consequence of the growing 

human population, road surfaces have become an inescapable feature in nearly every natural 

landscape, with 73% of all lands in the United States lying within 800 m of a road (Riitters and 

Wickham 2003).  From an anthropocentric point of view, roadways have been described as “the 

arteries of life” in reference to their contributions to the transport of citizens and goods on an 

intercontinental scale (FHWA 2001). 

 In addition to these familiar services, a road network’s beneficial effects include some 

aspects of landscape ecology. For example, a road’s presence reduces the frequency of off-road 

practices that alter multiple habitats within an ecosystem (Forman 2000). Roadways within 

conservation areas also allow for public access to recreational and educational activities with a 

goal of promoting a greater appreciation for the natural environment. Even in agriculturally 

saturated landscapes, “roadside natural strips”— lengths of native vegetation that run alongside 

roadways— act as buffers to run-off, and simultaneously sustain bird and small mammal 

populations where they would have otherwise been extirpated. Despite these positive 

contributions, road networks generally constitute a harmful presence in the natural landscape. 

The combined negative impacts of a road network cannot be averted without a proper 

understanding of the ecological flows they disrupt. My research focuses on the disruptions to 

migration and dispersion patterns in the presence of road surfaces, with an eye towards direct and 

indirect influences on vertebrate populations. 
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Landscape ecology 

 Before the ecological influence of a road network can be discerned, it is important to 

recognize the various contributions of biotic and abiotic systems to the broader spatial context of 

landscape ecology. A landscape, as defined by Harris et al. (1996), consists of “multiple 

ecosystem types that are spatially differentiated but nevertheless interact through many different 

energy-flows and ecological processes.” Forman (1986) summarized the subject with a list of 

three characteristics: structure, function, and change. He defined “structure” as the spatial 

relationship between ecosystems, which includes certain features like the distribution of 

individuals, materials (e.g., air, water, soil), and energy. “Function” refers to the interactions of 

individuals, materials, and energy-flow across ecosystem types. Finally, “change” implies a shift 

in the structure and function of the “ecological mosaic” over time, not barring anthropogenic 

alteration. 

The road-effect zone 

 By applying aspects of landscape ecology to research on the impacts of roads, scientists 

have quantified the extent of environmental damage caused by US roadways. Extensive research 

has identified ecological factors impacted by the road system (e.g., Forman 1986, 2000). To 

better grasp the under-studied influences of road networks on US lands, Forman (2000) 

introduced the idea of a “road-effect zone” to US ecologists. The road-effect zone – developed 

by Reijnen et al. (1995) to study avian populations – is a summation of the negative effects 

exerted on a natural area by a roadway, generally displayed as an uneven effect-buffer several 

times the width of a road surface. Numerous studies have identified roadway factors that have 

negatively influenced several biological processes: nitrogen oxides from car exhausts stymieing 

lichen abundance (Angold 1997); soil erosion, road salt, and invasive plants impacting drainage, 
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reservoirs, and native plant communities, respectively (Forman and Deblinger 2000); and, noise 

pollution displacing songbird populations (Reijnen et al. 1995; Rheindt 2003). 

 Using data acquired from several case studies as the basis for his model assumptions, 

Forman (2000) estimated that the United States’ 6.4-million km road network negatively impacts 

roughly 15-20% of the country’s surface area, despite the entire US road system only amounting 

to 1% of the country’s area. The most extensive effect-buffers occur in non-urban areas, 

including preserved natural areas and state-controlled roads, where the road-effect zone in some 

sections amounts to nearly one km in each direction (Forman 2000). These data highlight a road 

network’s capacity to impact protected and uninhabitable areas where other forms of human 

disturbance are atypical (but see Roever et al. [2010] for logging road effects). 

Vertebrates and road avoidance 

 The effects of roadways on vertebrate populations illustrate another aspect of road 

ecology whose impacts extend far past a distinguishable road-effect zone. In line with the 

various abiotic systems discussed above, indirect effects on vertebrate fauna are secondary and 

occur in the surrounding habitat (Andrews and Gibbons 2005). Secondary road effects occur in a 

number of distantly related vertebrate taxa, including birds (Findlay and Houlahan 1997), 

mammals (Forman and Deblinger 2000; McGregor et al. 2008; Roever et al. 2010), amphibians 

(Eigenbrod et al. 2009; Marsh et al. 2005; Mazerolle et al. 2005), and reptiles (Andrews and 

Gibbons 2005; Clark et al. 2010; Shine et al. 2004). For example, Rheindt (2003) discovered that 

some members within avian communities were more affected by traffic noise than other species. 

This influenced avian community structure near roadways, but had little effect on population 

connectivity. The issues associated with road avoidance are not present in bird populations 

because their movements are not restricted by road surfaces (although, birds may use roads as 
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navigational cues during migration [Forman and Alexander 1998]). However, Road avoidance—

an organism’s disinclination to come into contact with, or even into close proximity to, a road 

surface— can fragment terrestrial vertebrate populations. This would decrease levels of genetic 

heterozygosity (Findlay and Houlahan 1997; Lacy 1987) and increase inbreeding depression 

within isolated subpopulations, and decrease a population’s overall viability through an 

extinction vortex (Caughley 1994). 

 Several experiments have assessed the severity of the “barrier effect” on vertebrate 

populations within habitats dissected by roads. Studies on small mammals have described an 

aversion of individuals to cross a road after translocation to the other side (McGregor et al. 

2008). These trends were not correlated with traffic volumes, and suggest that characteristics of 

the road surface itself (e.g., reduced canopy and litter cover), and not vehicle traffic (e.g., noise 

pollution, direct road mortality), restrict movement. Secondary road effects impact amphibian 

populations to such an extent in some locations that road presence is considered one of the 

factors driving the global amphibian decline (Puky 2006). One aspect of amphibian physiology 

that limits road crossing is their vulnerability to desiccation. With highly permeable skin, 

amphibians are at risk of dehydration when traversing open areas that feature lower moisture 

levels than are present in the surrounding habitat. Therefore, road surfaces are typically only 

crossed at night, and following a rainfall event. With this in mind, displacement and homing 

experiments similar to those in the small mammal studies indicated a 51% reduction in 

successful homing attempts by salamanders separated from their home range by a road, 

compared to those in contiguous areas (Marsh et al. 2005). Furthermore, Eigenbrod et al. (2009) 

reported that traffic noise and general road presence isolated five of seven amphibian species 

within a community to pond systems on the same side of a road. 
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 Studying the spatial and behavioral intricacies of reptilian communities allows 

researchers to investigate road avoidance in a number of species with variable trophic niches and 

natural history traits (Andrews et al. 2008). Sheperd et al. (2005b) showed that snakes and box 

turtles in a moderately dissected habitat were far more likely to avoid crossing a road than would 

be considered random. Andrews and Gibbons (2005) observed interspecific variation in the 

propensity of snakes to cross a road, and in the behavioral responses to passing vehicles; in 

general, smaller species were less inclined to cross, and bulkier species like rattlesnakes or 

cottonmouths would begin to cross but ultimately would return to their original side. 

 Using molecular genetics in combination with landscape ethics, Clark et al. (2010) 

discovered that genetic relatedness among hibernating aggregations of Timber Rattlesnakes was 

significantly affected by road presence. In other words, perceived connectivity (i.e., gene flow) 

between hibernacula separated by a road surface was significantly less than connectivity of 

hibernacula in a contiguous landscape. More remarkable, gene flow between two hibernacula 

separated by a road was comparable, if not greater, than the connectivity of two hibernacula 

separated by a larger, contiguous distance. 

  The variable nature of biological responses to indirect road effects is difficult to observe 

and quantify. In part due to road ecology’s relative infancy in the scientific realm, studies done 

on its behalf are cumbersome to draft and few in overall number (Andrews et al. 2006). 

However, secondary road impacts appear to constrain gene flow in terrestrial vertebrate 

populations (Forman and Alexander 1998). Factors like road avoidance, although not 

immediately detrimental to population numbers, can drastically impact population viabilities 

over the long-term. 
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Direct road mortality 

            Direct road mortality is defined as the infliction of lethal bodily injury to an animal as a 

result of the construction and/or human-related use of a road surface. Vertebrate road mortality 

has been documented for nearly a century (Scott 1938), but many early reports were more often 

anecdotal or based on short-term data collected opportunistically, and often justified only by the 

concern of the scientists involved for the high occurrence of mortality (Stoner 1925). 

Standardized experiments with the central intent of examining road influence on wildlife 

populations have only been undertaken in more recent decades (Andrews et al. 2006; Puky 

2006). Nevertheless, the rapid turnover of new data following the development of road ecology 

has facilitated the achievement of many significant conclusions. 

            Lalo et al. (1987) estimated that approximately 1,000,000 vertebrates are killed per day 

as a result of traffic collisions along the United States’ 6.4 million-km road network. Of that 

total, a small proportion of large vertebrate roadkills (e.g., deer, bears, wolves) is often the focus 

in the public attention because: 1) the risk of human injury in a collision; and, 2) the charismatic 

nature of these species (Clevenger et al. 2003). These problems are exacerbated where human 

disturbance in certain areas attracts large species. In a study that examined bear movements with 

respect to logging roads, Roever et al. (2010) discovered that bear movements increased when in 

close proximity to roads, often resulting in the use of the logging roads as corridors for 

movement. Bears were also attracted to recently logged areas following the succession of fruit-

bearing shrubs and other edible plants. The researchers urged park managers to reduce traffic 

(especially that of pedestrians) in these areas to limit the chance of lethal encounters between 

humans and bears. 
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 Although concerns for the safety of both humans and larger vertebrates are warranted, the 

study and protection of smaller wildlife should be given higher priority, especially in light of the 

decline of global amphibian and reptile populations (Gibbons et al. 2000; Puky 2006). In 

addition to simply collecting and quantifying roadkill data, researchers have investigated various 

intrinsic (e.g., behavioral, life history traits) and extrinsic (i.e., anthropogenic, environmental) 

factors having the potential to influence in-transit survivorship. For example, a roadway can 

attract wildlife –ultimately increasing the time an organism is on, or near, a road – by its 

association with an ideal basking surface (e.g., lacertid lizards; Meek 2009), scavengable carrion 

(e.g., vipers; DeVault and Krochmal 2002) or nesting sites (e.g., pond turtles; Aresco 2005). 

Road-crossing speed and behavioral responses to passing vehicles vary among snake species 

having different life histories (Andrews and Gibbons 2005). Crossing speeds were the slowest in 

bulky (i.e., rattlesnakes) and small-bodied (i.e., ring-necked snakes) species. These types of 

snakes were also more likely to freeze when faced with an on-coming vehicle, which increases 

the chances of road mortality.  

 Extrinsic effects, and their interactions, have been documented as some of the greatest 

influences to amphibian and reptile road mortality. Subtle variations in nightly traffic intensity 

have been shown to affect the abundance of dead-on-road (DOR) amphibians, and overall 

amphibian populations (Fahrig et al. 1995) near roads. Gibbs and Shriver (2005) also 

encountered declines in turtle populations inhabiting areas of increased road density. Smith and 

Dodd (2003) encountered 623 dead snakes (1.85 snakes/km) in a year-long survey of a Florida 

roadway – the highest recorded level of snake mortality to date. Road mortality can also be 

affected by personal opinions about certain species; as a group, snakes are often subject to 

malicious killing by humans. On-road experiments coupled with personal surveys indicated 
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snakes were more likely to be purposefully run over than other native animals encountered 

within road boundaries (Langley et al. 1989). 

 Direct road mortality rates are highest in vertebrates where the spatial connection among 

resources across a landscape is compromised by the road surface in question (Andrews et al. 

2006). Roadways have little direct effect on overarching ecosystem features, such as adjacent 

habitat types or local climate patterns. Given that a landscape is composed of repeating 

ecosystem clusters interconnected by a number of nutrient and energy flows, a vertebrate 

population’s intrinsic movement patterns stimulated by environmental variables will persist 

despite the obstructive and potentially lethal presence of a roadway. 

 Seasonal movements in amphibian and reptilian populations increase the vulnerability of 

taxa to road mortality and population decline. Amphibians are known for their explosive 

migrations to and from aquatic breeding aggregations. Ashley and Robinson (1996) observed 

over 30,000 amphibian road kills in conjunction with seasonal migratory breeding patterns. 

Glista et al. (2007) suggested these en masse migrations put amphibian populations at the highest 

risk of decline. Several studies have also investigated the effects of road mortality on sex ratios 

in turtle populations. Generally, female pond turtles make long-distance migrations out of their 

normal home ranges in order to reach optimal nesting sites (Beaurdy et al. 2010). These 

movements increase the chances of female road mortality, and the resulting shift to a male-

biased sex ratio could limit effective population sizes (Gibbs and Steen 2005). Snake populations 

incur similar mortality, especially during seasonal activity peaks associated with breeding 

seasons (Bonnet et al. 1999; Hartmann et al. 2011; Sheperd et al. 2008; Shine et al. 2004), egg-

laying (Bonnet et al. 1999), and the ingress and egress periods associated with over-wintering 

(Seigel and Pilgrim 2002; Shine and Mason 2004). 
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 The general consensus among wildlife biologists is that indirect effects like road 

avoidance are more detrimental to vertebrate populations than direct road mortality (Andrews 

and Gibbons 2005; Bonnet et al. 1999; Forman and Alexander 1998); scientists especially urge 

against the use road-kill numbers as an estimator of overall mortality or population trends 

(Andrews et al. 2006; Bonnet et al. 1999). It could be argued that direct mortality trends will 

ultimately promote the selection of road avoidance behavior, however, and the issues of 

connectivity therein (Sheperd et al. 2008b). In situations where a road cannot be avoided, the 

reduction of certain age or sex class individuals can significantly decrease a population’s 

viability. Row et al. (2007) analyzed the mortality rate and total expected number of crossings by 

a moderately-sized sample of radio-tracked ratsnakes. They reported that a small number of adult 

mortalities per year were enough to increase extinction risk from 7% to 98% over the next 500 

years. 

 An interaction among two or more negative variables could increase direct mortality 

rates. Joly et al. (2003) used models and GIS overlays to display how increased traffic volumes 

during explosive amphibian migrations can decrease individual survivorship. Similar results 

were observed in several field experiments (Fahrig et al. 1995; Lode 2000; Sheperd et al. 2008). 

 My experiment assessed the significance of a number of variables influencing the 

temporal and spatial patterns of road mortality in a population of Midland Brownsnakes 

(Storeria dekayi wrightorum). Individuals of this population utilize two separate habitat types in 

the span of a year, and therefore must make biannual migrations between summer activity areas 

and over-wintering sites. However, in order to successfully reach either, snakes must traverse a 

2.4-km stretch of paved road. Despite their relatively small size and cryptic nature, Brownsnakes 

readily cross the road surface during their seasonal migrations. There is no evidence to show that 
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any cohort within this population elicits road avoidance behaviors; on the contrary, road surveys 

have yielded a substantial representation from all age and sex classes. 

 My study had two main objectives. First, I determined whether certain intrinsic (i.e., 

overall body size, gender, behavior) or extrinsic (i.e., temperature, season, traffic volume) 

variables affected Brownsnake survivorship. Next, I employed a Geographic Information System 

(GIS) to examine whether snake movements across the road tended to cluster around certain 

habitat features along the road. I analyzed these data to better inform potential efforts to mitigate 

road mortality rates in this population. 

            I expected that size variables like body mass or size would not influence snake mortality 

for two reasons. First, even the largest recorded Brownsnakes are small enough to be mistaken 

by a passing motorist for twigs or other road debris. And secondly, Midland Brownsnakes, like 

other species (Andrews and Gibbons 2005), utilize a freezing defensive behavior when 

threatened. Adopting this sort of posture while on a road surface increases that individual’s risk 

of death, regardless of the snake body size. I also expected that male snakes would incur higher 

mortality than females, on account of their propensity to move more in search of mates at certain 

times of the year (Ernst and Ernst 2003). For this same reason, I suspected that male snakes 

would be less consistent in their movements across the road, thereby further increasing their 

chances of mortality. Moreover, I hypothesized that movement direction across the road would 

be best predicted by the season within the entire activity period. 

 Because the road and associated edge habitat do not serve either of the purposes of the 

adjacent ecosystems, I predicted that on-road encounter rates will peak during migration pulses. 

Next, I hypothesized that temperature and traffic volume will influence snake occurrence and 

mortality on the road, respectively. If my hypothesis is supported, then days where the 
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temperatures best suited for Brownsnake migration coincide with the highest vehicle traffic will 

result in the highest mortality rates for Brownsnakes.  Finally, I predicted that snakes would 

choose to cross the road at certain “hotspots”, my term for points along the road associated with 

certain habitat types or even scent trails laid down previously by other migrating Brownsnakes. 
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METHODS 

Study site 

            Our study was conducted at Fox Ridge State Park (FRSP; Fig.1), located 11 km south of 

Charleston (Coles County, Illinois). The park is 835 ha in size, and consists of upland oak-

hickory forests, lowland old-field and successional forests, and small patches of short-grass 

prairie.  FRSP also contains approximately 8 km of paved, two-lane road. This road network 

consists of three components. The main road that connects to the park entrance forks near the 

center of the park, and those two new branches extend and culminate in canoe-launches on the 

Embarrass River. Our experiments focused on a 2.4-km stretch of road located in the distal 

portion of the northernmost branch, also called Ridge Lake Road. This stretch of road is unique 

in that it bisects lowland Brownsnake activity areas to the west from optimal hibernation sites 

located in the upland ridges to the east. 

Study organism 

         Midland Brownsnakes (Storeria dekayi wrightorum) are one subspecies within 

the dekayi complex. The distribution of the entire species ranges eastern United States, eastern 

Canada, and parts of Mexico and Central America (Ernst and Ernst 2003). Midland Brownsnakes 

are live-bearing, nonvenomous natricine snakes that are considered a member of the leaf-litter 

snake guild—an assemblage of small, fossorial snakes (but see Neill [1948] for arboreal 

behaviors) that feed mostly on snails, worms, and other soft-bodied invertebrates (Ernst and 

Ernst 2003). Brownsnakes have been known to reach 52.7 mm total body length (TBL), although 

individuals usually average 20.0-40.0 cm TBL. Breeding activities generally occur in mid-April 

at these latitudes. After an average gestation period of 74 (observed range: 14-113) days, females 

isolate themselves from conspecifics and give birth to about 13 (observed range: 3-41) young. 
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         Despite their commonality across much of eastern North America, the cryptic nature of 

Brownsnakes and their relatives makes this entire group difficult to detect and study. Therefore, 

the amount of work done assessing the natural history and ecology of this guild in general is 

relatively scant (Clausen 1936; Neill 1948; Noble and Clausen 1936; Pisani 2009). Thus, my 

study site is novel in that a large proportion of one entire population can be opportunistically 

encountered and captured during highly synchronous migrations. 

Data collection 

            I surveyed the 2.4-km stretch of Ridge Lake Road by two methods. First, I installed nine 

100-m drift fences at 170-m intervals along the entire uphill (east) side of the road. Drift fences 

and pitfall trap arrays are effective methods to passively survey small snake species in a large 

area. The fences were constructed from 45-cm rolls of silt fencing stapled to 30 cm wooden 

stakes. I augmented each fence with pitfall traps and rubber covermats. I used 19-L plastic 

buckets at 33-m intervals along the uphill side of the fence, and three 1-L buckets at 25-m 

intervals along the downhill side of the fence. Four pairs of covermats, each approximately 3 m2, 

were placed evenly along the length and on each side of each fences. 

 To supplement the passive sampling efforts of the fences, I completed road-walking 

surveys to collect both live and dead snakes directly off of the road surface. During periods of 

high snake movement, I walked the road twice daily. Generally, the use of vehicles for transport 

between fences was only allowed when snake encounter rates were low enough that the vehicle 

1) did not impair the accuracy of locating snakes on the road, and that it 2) did not add to the 

observed mortality data. If either of these criteria were broken, then I began road-walking 

surveys. 
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 Upon encountering a snake, I first noted whether it was alive, or DOR (i.e., dead or dying 

from a collision. Next, I gathered orientation data. Orientation was defined as the direction a 

snake was moving in prior to being disturbed. Therefore, if I encountered a snake on the road 

and facing the fence, it was considered to be moving “up”. If I captured a snake on the uphill 

side of the fence, it was assumed that the snake was attempting to reach the lowland habitat, and 

so I considered it to be moving “down”. The opposite was true for snakes encountered on the 

downhill side of the fence. Orientation data could not be collected either from individuals in any 

of the fences’ end buckets, or from dead or dying individuals, since the force of a collision could 

have disturbed them from there original positions. Next, I recorded the GPS location of where all 

live and DOR snakes were first sighted. If a snake was located in a bucket or under a coverboard, 

I gathered that object’s location code as well. In order to identify recaptured snakes, I uniquely 

branded all live individuals using a medical cauterizer. Winne and colleagues (2006) identified 

these medical cauterizers as a field-portable and inexpensive means of marking small-bodied 

snakes. The marks have also been shown to last two years, or more in some species. To conserve 

battery life, we marked DOR individuals with a round-tipped permanent marker; however, we 

did not mark or take morphometric data from DOR individuals that were too desiccated to 

provide accurate measurements. 

 All live snakes and DOR snakes in good condition were brought to the lab for further 

processing. There, I measured mass (±0.01 g), snout-vent length (SVL) and tail length (±1 mm). 

I palpated all snakes to determine the presence of stomach contents; females were also palpated 

to determine gravidity. Finally, I determined gender via cloacal probing. It should be noted that I 

took measurements in the order of increasing level of stress put on the animal in order to 

minimize stress throughout the entire procedure. I collected all possible accurate measurements 
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from DOR individuals (e.g., flattened snakes still provided SVL and/or TL data, but not data for 

mass or gender). 

 I collected daily traffic volume data from an Illinois Department of Transportation 

(IDoT) car counter installed at the start of the 2.4 km study stretch. All live specimens were 

captured under the authorization of IDNR permits, and were handled in accordance with IACUC 

guidelines. 

 Prior to any hypothesis testing, I ran the appropriate normality tests (PROC 

UNIVARIATE, SAS) on all response variables. Due to the absence of normality in the majority 

of my variables (p<0.001 in Kolmogorov-Smirnov tests), all statistical analyses in my study were 

done using non-parametric analyses. I used a Kruskal-Wallis test (PROC NPAR1WAY, SAS) to 

determine whether body size variables (i.e., SVL, TL, mass) had an effect on snake survivorship, 

orientation when crossing a road surface, and overall activity season. Next, I used Chi-Square 

analyses (PROC FREQ, SAS) to investigate the differential effects of mortality across sexes, 

orientation across sexes, and overall orientation across seasons. Finally, a Kernel-density 

function within ArcGIS visualized the spatial clustering of snake movements across the road, and 

variation in clustering across seasons. 
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RESULTS 

 Since October 2010, 1885 Midland Brownsnakes have been collected from Ridge Lake 

Road and associated drift fence arrays. Of those snakes, 1184 (62.8%) were DOR individuals. It 

should be noted that my lab group and I have captured an additional 11 snake species either on or 

adjacent to the road surface at FRSP. These species include: Gray Ratsnake (Pantherophis 

spiloides), Blue Racer (Coluber constrictor foxii), Prairie Kingnsnake (Lampropeltis c. 

calligaster), Red Milksnake (Lampropeltis triangulum syspila), Eastern Milksnake 

(Lampropeltis t. triangulum), Eastern Hog-nosed Snake (Heterodon platirhinos), Northern 

Watersnake (Nerodia sipedon), Rough Greensnake (Opheodrys a. aestivus), Common 

Gartersnake (Thamnophis s. sirtalis), Northern Ring-necked Snake (Diadophis puntatus 

edwardsii), and Northern Red-Bellied Snake (Storeria o. occipitomaculata). 

 Neither SVL (K-W statistic = 0.12, p = 0.74) nor TL (K-W statistic = 0.17, p = 0.68) 

were effective predictors of road mortality. Live snakes had greater mass than DOR individuals 

(K-W statistic = 14.4, p = 0.0002). Females had longer SVL, shorter TL, and larger masses than 

male snakes (p < 0.0001). 

 Male snakes suffered higher mortality than females (χ2 = 16.38, p< 0.0001; Fig. 2); in 

spite of that fact, male and female snakes were equally likely to, in any season, cross the road in 

both directions (Spring: χ2 = 0.85, p= 0.36; Summer: χ2 = 0.00, p =1.00; Autumn: χ2 =3.50, p= 

0.06; Fig. 3). Snakes migrating into the lowland habitat were less numerous than the number of 

snakes present in the Autumn migration (K-W statistic = 28.69, p <0.0001; Fig. 4, 5). 
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DISCUSSION 

 My results indicate that a number of intrinsic and extrinsic ecological factors relate to the 

overall negative influence of roadways on this population of Midland Brownsnakes. First, I 

discovered that body mass, but no other size factor, influenced the probability of snake mortality. 

Brownsnakes have a diminutive profile that makes them difficult to identify and avoid along a 

road surface, even among drivers inclined to do so. It is very likely that what is an improvement 

in size, in reality, might have very little biological influence on the snake’s overall size or ability 

to flee from predators. When threatened, a brownsnake will often elicit a freezing defensive 

behavior. A common occurrence among small or cryptic species, this behavior is selected for in a 

natural context where predators often rely on visual cues to detect prey. In the foreign context of 

a road surface, freezing behaviors increase the amount of time a snake resides on the roadway, 

thereby increasing the chances of a vehicle collision (Andrews and Gibbons 2005). 

 In road avoidance tests, Andrews and Gibbons (2005) observed nearly absolute road 

avoidance in Ring-necked Snakes (Diadophis punctatus), another small-bodied species. They 

conclude that behavioral and natural history traits might have more explanatory power in 

discerning patterns of inter-individual survivorship. Such insights could streamline conservation 

decisions that have to do with road planning in sensitive areas. 

The direction of brownsnake movement was dependent on season, with snakes entering 

the lowland habitat in the Spring, and migrating to the upland forests in the Autumn (Fig. 3). In 

the Spring, snakes descend from the upland ridges and enter lowland areas containing wetlands 

and old fields, where substantial snail and worm populations sustain breeding adults and 

newborn individuals. Pisani (2009) reported similar findings for a population that hibernated in 

forest edge habitat, then migrated to grassier and prairie habitats in the Spring. Brownsnakes at 
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FRSP benefit from the utilization of two distinct habitat types in the course of a single year. The 

innate drive to make migrations (Pisani 2009) across a fragmented landscape might have 

originated at a time when no road barrier was present, which would explain their willingness to 

traverse an exposed road surface (thereby subjective themselves to both natural and 

anthropogenic mortality risk; Bonnet et al. 1999). 

 Shine and Mason (2004) introduced the idea that mortality risk during periods of 

inactivity can dwarf the risk associated with predation or roadkill during migratory periods. They 

estimated mortality of a population of Red-Sided Gartersnakes (Thamnophis sirtalis parietalis) 

to > 60,000 animals following freezing and flooding events in three large dens. Seigel and 

Pilgrim (2002) reported on the factors (e.g., habitat alteration due to flooding, or direct road 

mortality) had greater influence on the shift in migratory behavior they observed in a population 

of Masassaugas (Sistrurus c. catenatus). They hypothesized that the population was composed of 

migrating and non-migrating individuals, and that a factor (or factors) reduced numbers of the 

migrating individuals. The semi-annual flooding that occurs in the lowland areas of FRSP could 

explain the persistence of annual migrations of brownsnakes towards upland hibernacula. 

Because these flooding events only inundate parts of brownsnake activity areas during the early 

spring, drastic population losses (e.g., Shine and Mason 2004) would not be expected. Thus, 

direct road mortality is the most obvious threat to migrating brownsnakes at FRSP. 

 Generally, snake-road interactions are negative; for those snakes that survive a road 

crossing, the tongue and oral mucosa of scent-trailing individuals can become irritated by road 

particulate (Andrews and Gibbons 2005; Shine et al. 2004). In contrast, however, snakes 

sometimes sit motionless and prostrate on warm road surfaces for extended periods (Ashley and 
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Robinson 1996). Andrews and Gibbons (2005) argued that these are simply exaggerated freezing 

defensive behaviors in the presence of incoming vehicles or people.  

 Snake encounter rates were higher in the Autumn than in other seasons (Fig. 5). One 

explanation for this pattern is that the young-of-year individuals migrating for the first time 

raised the total number of snakes encountered at that time. Female T. s. parietalis typically 

approach hibernacula using preferred migratory corridors, while dispersal during egress occurs in 

all compass directions (Shine et al. 2001). It is possible that Brownsnakes at FRSP display 

similar dispersal responses prior to their migration into the lowland habitat. This type of behavior 

may allow females to acclimate to climatic conditions before mating or dispersing further. 

Further research in this system should attempt to identify Brownsnake over-wintering sites in 

FRSP so that patterns of post-emergence dispersal could be better understood. 

  Male Brownsnakes incurred higher road mortality than their female counterparts (Fig. 2). 

In general, this pattern is explained by male snakes having increased vagility when searching for 

mates, and therefore in greater risk of encountering a predator or other threat. Bonnet et 

al. (1999) and Hartmann et al. (2011) examined various mortality risks dependent on the amount 

of movement. They observed that snakes were at highest risk during long-distance movements 

outside of their home ranges. Sedentary snakes, therefore, were least threatened by natural or 

anthropogenic threats. Similarly, in the weeks preceding birth, gravid Brownsnakes will isolate 

themselves and immobilize (Clausen 1936).  As has been shown in other snakes (Waldron et 

al. 2013), female brownsnakes that produced offspring in a given year might be at higher risk of 

over-wintering mortality than individuals that were not gravid in the same year. The sampling 

regime of my study could not quantify this possibility. 
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 Brownsnake mortality on the road surface at FRSP was highest during the Autumn 

migration – likely caused by the combined influences of temperatures promoting snake 

occurrence on the road and traffic volume on mortality (Fig. 5, 6). Previous studies have 

demonstrated that snake mortality is correlated with summer temperatures that spurred snake 

movements, or the interactions of temperature with traffic volume and habitat type 

(Ciesiołkiewicz et al. 2006; Sheperd et al. 2008). My experiments indicated that Brownsnake 

mortality within the Autumn increased when traffic volume was highest, during during the 

weekends. Although high traffic volume occurring during large migration pulses can exacerbate 

mortality, its localized nature also offers opportunities to mitigate roadkills through various 

means. 

 Patterns of road mortality in my study system were shaped by topography and habitat 

formations on either side of the roadway. In FRSP, snake movements in the spring associated 

with a fair proportion of the drift fences. I expect that the optimal microhabitat found beneath 

coverboards made this passive sampling method most effective at that time period. During the 

Autumn migration, however, movement clusters have shifted from the drift fences to areas 

associated with valleys or temporary streambeds that form a pathway of low-slope topography. It 

is likely that brownsnakes follow these streambeds into the upland habitat, where they find 

appropriate microhabitat in which they hibernate. It is also worth noting that one of the two 

snake movement clusters along the FRSP road was more closely associated with some riparian 

habitat near the Embarrass River than any other section of road. Amphibian and reptile corridors 

often overlap with wetland habitats (Glista et al. 2007; Langen et al. 2007). At FRSP, 

brownsnakes may be utilizing wetter areas to feed on soft-bodied invertebrates prior to fall 

migrations. 
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 Corridors between two suitable parcels of habitat are typically installed as culverts that 

allow animals to pass underneath a road.  These structures range in size and design, depending 

on the type of road and taxa involved, and might also be constructed as bridges passing over a 

road. Corridors have reduced mortality in a number of herpetofaunal communities (Aresco 

2005b; Dodd et al. 2004; Jackson 2003; Patrick et al. 2010). Installing such culverts in locations 

that harbor the highest occurrence of snake movements within FRSP might reduce the overall 

mortality rate in this population. 

 My study has identified a number of factors – including seasonal, spatial, and sexual 

components – that influence road mortality in a little known species of leaf-litter snake. As a 

result of gender-driven variation in movement, male brownsnakes incurred greater mortality than 

their female counterparts. Snake encounter rates on the road as a whole varied with season, with 

periods of higher movement frequency occurring in the Autumn, and in association with 

topographic cues. Because of their dependence on distinct habitat features, this population of 

Midland Brownsnakes traverses a road surface despite high mortality risk. After almost three 

activity seasons, 63% of snake encounters have been DOR individuals. Further investigation will 

determine whether this population can sustain itself in the face of large, annual mortality events. 

These findings might also apply to similar systems involving species of greater conservation 

concern in Illinois, such as Kirtland’s Snakes (Clonophis kirtlandii). Furthermore, where they 

occur in proximity to roads, future studies involving small-bodied snake should consider road-

related factors in their experimental design. 
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FIGURES 

 

 

 
Fig. 1. Topographic map of Fox Ridge State Park (FRSP; Coles Co., Illinois). The rectangular 
box identifies the 2.4-km study road running along the ecotone between lowland areas to the 
west and upland forests to the east. 
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Fig. 2. The percentage of female and male Midland Brownsnakes (Storeria dekayi wrightorum) 
found dead-on-road (DOR) across three seasons.    

 

 
Fig. 3. Weekly orientation trends for all live female and male Midland Brownsnakes (Storeria 
dekayi wrightorum). Bars with a value above zero indicate that snake movements were generally 
towards upland habitats, while negative values indicate snakes focused movements into lowland 
areas. 
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Fig. 4. Average daily traffic volumes (±1 SE) and mortality rates (solid points; ±1 SE) for 
Midland Brownsnakes (Storeria dekayi wrightorum) across Spring and Autumn seasons. 

 

 

Fig. 5. Weekly mean encounter rates for Midland Brownsnakes (Storeria dekayi wrightorum) 
and weekly mean of daily high temperatures plotted over time. The horizontal line indicates the 
minimum temperature threshold for snake encounters. The arrow indicates a steep temperature 
decline that appears to stimulate snake movements.  
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