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Calculation of phonon dispersion in semiconductor nanostructures:
An undergraduate computational project

Jie Zoua�

Department of Physics, Eastern Illinois University, Charleston, Illinois 61920

�Received 14 August 2007; accepted 24 November 2007�

This paper discusses an undergraduate research project that involves the numerical calculation of
phonon dispersion in semiconductor nanostructures. Phonon dispersion is calculated in the elastic
continuum approximation by applying a finite-difference method to solving the elastic wave
equation with boundary conditions. Students did simulations for two nanostructures: a free-standing
GaN thin film and a free-standing AlN /GaN /AlN heterostructure. A comparison of these two
structures helps students understand the effect of boundary conditions on the nature of the phonon
dispersion. The project is related to current research in phonon thermal transport in semiconductor
nanostructures and nanodevices. © 2008 American Association of Physics Teachers.

�DOI: 10.1119/1.2825396�

I. INTRODUCTION

Current technology in solid-state devices has reached the
nanometer scale. Development of solid-state devices is
driven by understanding of the novel properties and new
physical phenomena in the underlying materials. Most solid-
state devices, such as transistors, are based on semiconduc-
tors and their nanostructures. The advances in technology
have stimulated much research interest among physicists and
engineers in the properties of semiconductor nanostructures,
such as quantum wells, quantum wires, and quantum dots.1

Although there has much work on the electronic properties
of semiconductor nanostructures, research in phonon proper-
ties has attracted significant attention in recent years.2 Pho-
non engineering, an application analogous to electronic
band-gap engineering,3 has recently been proposed, and pro-
vides new opportunities for controlling phonon transport in
semiconductor nanostructures by tuning the phonon disper-
sion. In a semiconductor, heat is conducted mainly via lattice
waves or phonons. In analogy to electronic band structure,
phonon dispersion is an important property that directly af-
fects the lattice thermal conductivity of the semiconductor.
One of the main factors that drives the current interest in
phonon heat conduction in semiconductor nanostructures is
the increased heat dissipation associated with an increase in
the transistor packing density.

Students in introductory solid-state physics often solve
phonon dispersion problems in simple one-dimensional
cases.4 Two typical examples are the monatomic and di-
atomic linear chain models, which can be solved analytically
using lattice dynamics.4 Students are usually not familiar
with three-dimensional problems and are not exposed to
problems that require numerical solutions. Additionally, the
results discussed in a typical undergraduate textbook apply
only in bulk materials. Modifications are expected in a con-
fined structure, such as a thin film �quantum well�, a nano-
wire �quantum wire�, and a heterostructure. In a semiconduc-
tor, such as silicon, heat conduction is due mainly to long-
wavelength acoustic phonons.5 An alternative approach to
the calculation of phonon dispersion is the elastic continuum
approximation, in which the equations of motion of the at-
oms are reduced to the continuum elastic wave equation.6,7

This paper discusses an undergraduate project in which
students apply a finite-difference method to determine the
phonon dispersion in a free-standing GaN thin film and a

three-layer AlN /GaN /AlN heterostructure. The choice of
GaN and its heterostructure is due to their potential use in
high-power and high-temperature device applications. The
goal of the project is to introduce students to current research
topics in physics and engineering and to help them develop
computational skills to solve more complicated problems.
The project also helps students better understand the effect of
boundary conditions on the characteristics of the phonon dis-
persion. Although the project focuses on phonons, the con-
cept of quantization induced by boundary conditions applies
equally well to an electron confined in a quantum well.

The rest of the paper is organized as follows. The next
section presents the general theory of lattice thermal conduc-
tivity in order to illustrate the importance of phonon disper-
sion. Section III presents the continuum elastic wave equa-
tions, followed by a discussion in Sec. IV on the numerical
algorithm for solving phonon dispersion. The simulation re-
sults are discussed in Sec. V.

II. LATTICE THERMAL CONDUCTIVITY
AND PHONON DISPERSION

The law of thermal conduction can be found in most in-
troductory texts.8 In the one-dimensional case, it takes the
form, J=��dT /dx�,8 where J is the heat flux or the thermal
energy transmitted per unit cross-sectional area per unit time,
and �dT /dx� is the magnitude of the temperature gradient.
The proportionality constant � is the thermal conductivity.
More generally, dT /dx should be replaced by the tempera-
ture gradient �T. The heat flux J can be expressed in terms
of phonons as a sum over contributions from all phonon
modes:9

J = �
k,�

nk,�����k�v��k��T. �1�

A phonon mode is specified by the wave vector k and the
phonon branch �. nk,� is the number of phonons of type
�k ,�� per unit volume of the crystal. The phonon angular
frequency is given by �, and the energy of a phonon of type
�k ,�� is given by ����k�. v��k��T is the component of the
phonon group velocity in the direction of the temperature
gradient. Equation �1� for the heat flux is analogous to that
for the electric current density, in which electron density,
charge, and drift velocity are the counterparts of the phonon
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distribution, energy, and group velocity. An important term in
Eq. �1� is the phonon dispersion relation ���k�, which de-
scribes the dependence of the phonon angular frequency on
the wave vector.

We model the thermal conductivity in a semiconductor
nanostructure as follows:9–11 �1� Find the phonon distribution
by solving the phonon Boltzmann transport equation in the
relaxation-time approximation;9 �2� derive the phonon dis-
persion by solving the continuum elastic wave equation with
the appropriate boundary conditions; �3� calculate the pho-
non group velocity V=d� /dk; and �4� replace the summa-
tion in Eq. �1� by an integral over the phonon density of
states.

A generalized expression for the lattice thermal conductiv-
ity can be derived using the relation �=J / ��T�. The phonon
dispersion plays an important role in determining the lattice
thermal conductivity through its effects on other phonon
properties, such as the group velocity and density of states.

In the following we discuss the numerical calculation of
phonon dispersion in two types of nanostructures: a free-
standing thin film and a three-layer heterostructure. We fol-
low a general approach outlined by Balandin and
co-workers.12 The derivation and calculation of the lattice
thermal conductivity in a thin film and heterostructure can be
found in Ref. 13.

III. CONTINUUM ELASTIC WAVE EQUATIONS

We consider a free-standing GaN thin film and a free-
standing AlN /GaN /AlN heterostructure �see Fig. 1�. The
phrase “free-standing” describes an interface between a
semiconductor and a vacuum. A similar situation is that of a
string with one end that is free to move. A thin film refers to
a slab of material with a confined direction along the film
thickness. The AlN /GaN /AlN heterostructure is a three-
layer structure, with a core layer embedded between two
cladding layers made of a different material. Figure 1 shows
the schematics of the two structures. The x and y directions
in the plane of the structures are unbounded, and the direc-
tion along the z axis is confined. Both structures represent
quasi-two-dimensional systems, where the lattice wave
propagates in the �x ,y� plane. For example, we consider a
shear wave traveling in the x direction with a particle dis-
placement in the y direction. In this direction, the continuum
elastic wave equation is given by4

�
�2Uy

�t2 =
�Yx

�x
+

�Yy

�y
+

�Yz

�z
, �2�

where � is the density and Uy is the y component of the
displacement vector. Yx, Yy, and Yz are the stress compo-
nents. For example, Yx represents a force per unit area in the
y direction acting on a plane with its normal in the x direc-

tion. According to Hooke’s law, if the deformations are
small, the stress components are linearly related to the strain
components; the coefficients are called the elastic stiffness
constants. In a hexagonal crystal, such as wurtzite GaN, the
independent elastic stiffness constants are C11, C12, C13, C33,
C44, and C66.

14

We look for solutions to Eq. �2� of the form of a sinusoidal
wave,

Uy = uy�z�exp�i��t − kx�� , �3�

where uy is the amplitude, which depends on the z coordi-
nate, and k is the x component of the wave vector. If we
substitute Eq. �3� into Eq. �2� and use the relations between
the stress, strain, and displacement components, as described
in Ref. 4, we derive the elastic wave equations for a GaN
thin film and an AlN /GaN /AlN heterostructure. The deriva-
tion is straightforward, and we leave it as an exercise. The
results are given in Eqs. �4� and �7� for a GaN thin film and
an AlN /GaN /AlN heterostructure, respectively.

For a GaN thin film, Eq. �2� can be simplified to the
second-order ordinary differential equation

d2uy�z�
dz2 +

1

C44,GaN
��GaN�2 − C66,GaNk2�uy�z� = 0. �4�

The free-standing boundary conditions require that the stress
and strain are zero at the surfaces, that is,

�duy�z�
dz

�
z=�t/2

= 0, �5�

where t is the thickness of the thin film. The boundary-value
problem represented by Eq. �4� with the free-standing bound-
ary conditions can be solved analytically.

A three-layer heterostructure is different because it is in-
homogeneous along the z direction, and therefore the mate-
rial parameters, such as � and Cii �i=4 or 6�, depend on the
z coordinate. We define the material parameters as piece-
wise functions of z as

��z� = ��AlN, − t�GaN�/2 − t�AlN� � z � − t�GaN�/2,

�GaN, − t�GaN�/2 � z � t�GaN�/2,

�AlN, t�GaN�/2 � z � t�GaN�/2 + t�AlN� .
	

�6�

The elastic stiffness constants C44 and C66 can be defined
similarly. The elastic wave equation for the heterostructure is
given by

d2uy�z�
dz2 +

1

C44�z�
dC44�z�

dz

duy�z�
dz

+
1

C44�z�
���z��2 − C66�z�k2�uy�z� = 0. �7�

Note that the boundary conditions at the GaN-AlN interface
have been implicitly included in the z-dependent material
parameters. These boundary conditions are different from
those at the GaN-vacuum interface as in a free-standing GaN
thin film. This inhomogeneous medium approach has been
used in acoustics to analyze wave propagation in composite
plates.15 At the outer surfaces of the heterostructure, free-
standing boundary conditions apply. Equation �7� with the
free-standing boundary conditions cannot be solved analyti-
cally and numerical techniques need to be applied. Note that

Fig. 1. Schematics of a free-standing AlN /GaN /AlN heterostructure �left�
and a free-standing GaN thin film �right�. The coordinate system is shown in
the middle.
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for a thin film, C44 is independent of z and dC44�z� /dz van-
ishes. Equation �7� is then reduced to Eq. �4�.

IV. NUMERICAL SOLUTION
OF PHONON DISPERSION

The phonon dispersion for a shear wave in a thin film can
be solved analytically. The treatment is similar to a standing
wave on a string and a particle in a box problem in quantum
mechanics. The solution is

� =
C66k
2 + C44kz

2

�
, �8�

where kz is the component of the wave vector in the z direc-
tion. Due to the boundary conditions, kz is quantized and is
given by kz=n	 / t, where n is a positive integer and t is the
thickness of the thin film. The quantization of the phonon
modes is due to the spatial confinement of phonons, similar
to the confinement of an electron in a quantum well.

To solve for the phonon dispersion in a heterostructure
numerically, we use a finite difference method and follow a
general strategy in vibration analysis.16 Students can also
apply the finite difference method to a thin film and compare
the numerical solution with the analytical one. The numerical
algorithm takes four steps.

�1� Divide the total thickness t of the heterostructure into
N equal parts of width h= t /N. The z coordinate of each node
is given by: zi=z0+ ih, where z0=−t /2, and i=0,1 , . . . ,N.

�2� Apply the central-difference formula of the finite-
difference approximation to the first and second-order
derivatives in Eq. �7�:

d2u

dz2 �
�ui+1 − 2ui + ui−1�

h2 and
du

dz
�

�ui+1 − ui−1�
2h

. �9�

For simplicity, the subscript y is omitted. We apply Eq. �9� to
Eq. �7� at each node i and obtain

�− C44,i+1 + 4C44,i + C44,i−1

4h2 
ui−1 + ��i�
2 −

2C44,i

h2

− C66,ik
2
ui + �C44,i+1 + 4C44,i − C44,i−1

4h2 
ui+1 = 0.

�10�

Equation �10� represents N+1 algebraic equations with i
=0,1 , . . . ,N. If we apply the free-standing boundary condi-
tions and use the central-difference approximation, we find

�du�z�
dz

�
z=−t/2

�
�u1 − u−1�

2h
= 0 and �du

dz
�

z=t/2

�
�uN+1 − uN−1�

2h
= 0, �11�

which gives u−1=u1 and uN+1=uN−1.
�3� Convert Eq. �10� into a matrix eigenvalue problem of

the general form �A�u=
�B�u, where �A� and �B� are both
�N+1�� �N+1� coefficient matrices, 
=�2 is the eigenvalue,
and u= �u0 ,u1 , . . . ,uN�T is the eigenvector. We can show that
�B� is also a diagonal matrix. To derive the matrix eigenvalue
form, we suggest that students follow three steps. First, write
out Eq. �10� at each node i and replace u−1 and uN+1 by u1
and uN−1, respectively, as given in Eq. �11�. Second, note that

the problem is now represented by a system of �N+1� linear
and homogeneous equations with �N+1� unknowns,
u0 ,u1 , . . . ,uN. Then convert this system of linear equations
into matrix form and transform it to an eigenvalue problem.
Following the approach in Ref. 16, we then transform the
general eigenvalue problem to the standard form: �P�X
=
X. It is straightforward to show that �P�= �C�−1�A��C�−1,
X= �C�u, and �C� is a diagonal matrix with elements given
by cii=bii

1/2.
�4� Finally the algorithm is translated into a computer code

written in MATLAB®. The eigenvalues 
, are solved for each
value of the wave vector k using the intrinsic function eig.
The corresponding angular frequencies are calculated from
�=
1/2. The phonon dispersion is then plotted as a function
of � versus k.

V. SIMULATION RESULTS AND DISCUSSIONS

We performed simulations for a free-standing 6.0 nm GaN
thin film and a free-standing 2.0 /6.0 /2.0 nm AlN /GaN /AlN
heterostructure. The results are shown in Fig. 2. Note that the
vertical axis is the phonon energy, which differs from the
phonon angular frequency by a factor of �. The dashed line
in Fig. 2 shows the phonon dispersion in bulk GaN, which
shows the linear dependence of the angular frequency on
wave vector, as expected from the elastic continuum approxi-
mation. Note that phonon dispersion in the nanostructures
has different characteristics from that in the bulk. The angu-
lar frequency has a set of discrete values for each wave vec-
tor, resulting in discrete phonon branches. The origin of the
quantization of the phonon dispersion is the spatial confine-
ment of the phonons in the z direction, which leads to the
quantization of kz. In Fig. 3 we show a plot of the angular

Fig. 2. Acoustic phonon dispersion relations for the shear modes in �a� a
free-surface AlN /GaN /AlN heterostructure with a core layer thickness of
6 nm and a cladding layer thickness of 2 nm, and �b� a free-surface single
GaN thin film with a thickness of 6 nm. The dashed line shows the disper-
sion relation for the transverse acoustic �TA� waves in bulk GaN. Used with
permission from Ref. 13. © 2006, American Institute of Physics.
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frequency as a function of both k and kz in a thin film. The
quantization of kz and the resulting discrete phonon branches
can be clearly seen.

The difference in the phonon dispersion of the two nano-
structures can be explained in terms of the different bound-
ary conditions at the GaN interface. In a free-standing GaN
thin film, the elastic waves experience complete reflection at
the GaN-vacuum surface. The situation is similar to the re-
flection of a traveling pulse at the free end of a string. In
contrast, in an AlN /GaN /AlN heterostructure, the GaN layer
is embedded within another medium, AlN, which has a dis-
similar density and elastic stiffness constants. This situation
is similar to a heavier string attached to a lighter string. The
elastic waves now undergo partial reflection and partial
transmission at the GaN-AlN interface. The difference in the
boundary conditions at the GaN interface leads to different
characteristics of the phonon dispersion in the two nano-
structures. Because the boundary conditions can be modified
by adjusting the parameters of the interfacing materials, such
as the elastic properties and thickness, it is possible to tune
the phonon dispersion. As mentioned in Sec. I, the idea of
phonon engineering opens up new and exciting opportunities
for materials engineering.3
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