Faculty Research & Creative Activity

Document Type


Publication Date

January 2006


Clapper Rails (Rallus longirostris) can potentially serve as an indicator species of estuarinemarsh health because of their strong site fi delity and predictable diet consisting predominantly of benthic organisms. These feeding habits increase the likelihood of individuals accumulating signifi - cant amounts of contaminants associated with coastal sediments. Moreover, since Clapper Rails are threatened in most of their western range, additional study of the effects of potential toxins on these birds is essential to conservation programs for this species. Here we present techniques (DNA strand breakage, eggshell structure, and human-consumption risk) that can be used to quantify detrimental effects to Clapper Rails exposed to multiple contaminants in disturbed ecosystems as well as humans who may eat them. Adult birds collected near a site contaminated with polychlorinated biphenyls (PCBs) and metals in Brunswick, Georgia had a high degree of strand breakage, while those collected from a nearby reference area had no strand breakage. Although, results showed that eggshell integrity was compromised in eggs from the contaminated sites, these results were more diffuse, reemphasizing that multiple endpoints should be used in ecological assessments. This study also shows that techniques such as eggshell integrity on hatched eggs and DNA strand breakage in adults can be used as non-lethal mechanisms to monitor the population health of more threatened populations such as those in the western US. We also present results from human-based risk assessment for PCBs as a third toxicological endpoint, since these species are hunted and consumed by the public in the southeastern US. Using standard human-risk thresholds, we show a potential risk to hunters who consume Clapper Rails shot near the contaminated site from PCBs because of the additional lifetime cancer risk associated with that consumption.


This research was originally published in Studies in Avian Biology No. 32:270–281

Included in

Biology Commons