Faculty Research & Creative Activity

Document Type


Publication Date

June 2002


GP73 is a novel type II Golgi membrane protein of unknown function that is expressed in the hepatocytes of patients with adult giant-cell hepatitis (Gene 2000;249:53-65). Its expression pattern in human liver disease and the regulation of its expression in hepatocytes have not been systematically studied. The aims of the present study were to compare GP73 protein levels in viral and nonviral human liver disease and in normal livers, to identify its cellular sources, and to study the regulation of its expression in hepatoma cells in vitro. GP73 protein levels were quantitated in explant livers of patients with well-defined disease etiologies and compared with the levels in normal donor livers. GP73-expressing cells were identified immunohistochemically. GP73 expression in vitro was studied by Western blotting and immunofluorescence microscopy in HepG2 and SK-Hep-1 cells and in the HepG2-derived, hepatitis B virus (HBV)-transfected HepG2215 and HepG2T14.1 cell lines. Whole organ levels of GP73 were low in normal livers. Significant increases were found in liver disease due to viral causes (HBV, HCV) or nonviral causes (alcohol-induced liver disease, autoimmune hepatitis). In normal livers, GP73 was constitutively expressed by biliary epithelial cells but not by hepatocytes. Hepatocyte expression of GP73 was dramatically up-regulated in diseased livers, regardless of the etiology, whereas biliary epithelial cell expression did not change appreciably. GP73 was present at high levels in HepG2215 cells (a cell line that supports active HBV replication), but was absent in HepG2T14.1 cells (an HBV-transfected cell line that does not support HBV replication) and in HBV-free HepG2 cells. In SK-Hep-1 cells, GP73 expression was increased in response to interferon gamma (IFN-y), and inhibited by tumor necrosis factor x (TNF-x). In conclusion, increased expression of GP73 in hepatocytes appears to be a general feature of advanced liver disease, and may be regulated via distinct pathways that involve hepatotropic viruses or cytokines.


This peer-reviewed article is also available full text at http://onlinelibrary.wiley.com/store/10.1053/jhep.2002.32525/asset/510350617_ftp.pdf?v=1&t=hjpux4hr&s=d73e7dac640e69166c05c43102dab57e333b10de doi:10.1053/jhep.2002.32525